Range Extension
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
An ammeter with system resistance RSO has maximum deflection for ISO. How can this meter be adjusted to measure currents of up to IEO and how to measure voltages of up to VEO?
Solution:
abcliste abc To ext the range of the ammeter a parallel resistor sscRp shunt resistor has to be added such that at the maximum current sscImax the current sscIM through the system resistor does not exceed the given value. The two resistors in parallel have to fulfil the condition fracsscRpsscRM fracsscIMsscIp fracsscIMsscItot-sscIM The resistance for the shunt resitor has to be sscRp RpF RStimesfracIE-IS Rp approx resultRpP- abc The same meter can be used as a voltmeter. The full deflection corresponds to a voltage sscDelta VM sscRMsscIM In order to measure higher voltages a series resistor sscRs has to connected to the meter. The total voltage sscDelta Vtot is then split up between the two resistors: fracsscRssscRM fracsscDelta VssscDelta VM fracsscDelta Vtot-sscDelta VMsscDelta VM fracsscDelta Vtot-sscRMsscIMsscRMsscIM fracsscDelta VtotsscRMsscIM- Solving for the series resitance leads to sscRs sscRMleftfracsscDelta VtotsscRMsscIM-right RsF fracVEIS-RS Rs approx resultRsP abcliste
An ammeter with system resistance RSO has maximum deflection for ISO. How can this meter be adjusted to measure currents of up to IEO and how to measure voltages of up to VEO?
Solution:
abcliste abc To ext the range of the ammeter a parallel resistor sscRp shunt resistor has to be added such that at the maximum current sscImax the current sscIM through the system resistor does not exceed the given value. The two resistors in parallel have to fulfil the condition fracsscRpsscRM fracsscIMsscIp fracsscIMsscItot-sscIM The resistance for the shunt resitor has to be sscRp RpF RStimesfracIE-IS Rp approx resultRpP- abc The same meter can be used as a voltmeter. The full deflection corresponds to a voltage sscDelta VM sscRMsscIM In order to measure higher voltages a series resistor sscRs has to connected to the meter. The total voltage sscDelta Vtot is then split up between the two resistors: fracsscRssscRM fracsscDelta VssscDelta VM fracsscDelta Vtot-sscDelta VMsscDelta VM fracsscDelta Vtot-sscRMsscIMsscRMsscIM fracsscDelta VtotsscRMsscIM- Solving for the series resitance leads to sscRs sscRMleftfracsscDelta VtotsscRMsscIM-right RsF fracVEIS-RS Rs approx resultRsP abcliste
Meta Information
Exercise:
An ammeter with system resistance RSO has maximum deflection for ISO. How can this meter be adjusted to measure currents of up to IEO and how to measure voltages of up to VEO?
Solution:
abcliste abc To ext the range of the ammeter a parallel resistor sscRp shunt resistor has to be added such that at the maximum current sscImax the current sscIM through the system resistor does not exceed the given value. The two resistors in parallel have to fulfil the condition fracsscRpsscRM fracsscIMsscIp fracsscIMsscItot-sscIM The resistance for the shunt resitor has to be sscRp RpF RStimesfracIE-IS Rp approx resultRpP- abc The same meter can be used as a voltmeter. The full deflection corresponds to a voltage sscDelta VM sscRMsscIM In order to measure higher voltages a series resistor sscRs has to connected to the meter. The total voltage sscDelta Vtot is then split up between the two resistors: fracsscRssscRM fracsscDelta VssscDelta VM fracsscDelta Vtot-sscDelta VMsscDelta VM fracsscDelta Vtot-sscRMsscIMsscRMsscIM fracsscDelta VtotsscRMsscIM- Solving for the series resitance leads to sscRs sscRMleftfracsscDelta VtotsscRMsscIM-right RsF fracVEIS-RS Rs approx resultRsP abcliste
An ammeter with system resistance RSO has maximum deflection for ISO. How can this meter be adjusted to measure currents of up to IEO and how to measure voltages of up to VEO?
Solution:
abcliste abc To ext the range of the ammeter a parallel resistor sscRp shunt resistor has to be added such that at the maximum current sscImax the current sscIM through the system resistor does not exceed the given value. The two resistors in parallel have to fulfil the condition fracsscRpsscRM fracsscIMsscIp fracsscIMsscItot-sscIM The resistance for the shunt resitor has to be sscRp RpF RStimesfracIE-IS Rp approx resultRpP- abc The same meter can be used as a voltmeter. The full deflection corresponds to a voltage sscDelta VM sscRMsscIM In order to measure higher voltages a series resistor sscRs has to connected to the meter. The total voltage sscDelta Vtot is then split up between the two resistors: fracsscRssscRM fracsscDelta VssscDelta VM fracsscDelta Vtot-sscDelta VMsscDelta VM fracsscDelta Vtot-sscRMsscIMsscRMsscIM fracsscDelta VtotsscRMsscIM- Solving for the series resitance leads to sscRs sscRMleftfracsscDelta VtotsscRMsscIM-right RsF fracVEIS-RS Rs approx resultRsP abcliste
Contained in these collections:
-
-
Resistor Circuits by by