Exercise
https://texercises.com/exercise/relation-dual-basis-and-normal-basis/
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.

Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Let V be a finite dimensional vector space over K. Let mathcalBC be two bases for V Longrightarrow mathcalB^*C^* are two bases for V^*. Show the following identity: id_V^*_mathcalB^*^mathcalC^*leftid_V_mathcalC^mathcalBright^Tleftleftid_V_mathcalB^mathcalCright^Tright^-

Solution:
Proof. Let mathcalBv_...v_n mathcalCw_...w_n. A:id_V_mathcalC^mathcalB pmatrix vdots & & vdots v__mathcalC & hdots & v_n_mathcalC vdots & & vdots pmatrix. Write also Aa_ij. We have v_i_k^n a_kiw_k by definition. Let mathcalC^*w_^*...w_n^* be the dual basis of mathcalC. We apply the previous Lemma to lw_j^* and the basis mathcalB: w_j^*_i^n w_j^*v_i v_i^*_i^n w_j^*left_k^n a_kiw_kright v_i^* _i^n a_jiv_i^* Longrightarrow id_V^*_mathcalB^*^mathcalC^*A^Tleftid_V_mathcalC^mathcalBright ^T only kj remains from the inner
Meta Information
\(\LaTeX\)-Code
Exercise:
Let V be a finite dimensional vector space over K. Let mathcalBC be two bases for V Longrightarrow mathcalB^*C^* are two bases for V^*. Show the following identity: id_V^*_mathcalB^*^mathcalC^*leftid_V_mathcalC^mathcalBright^Tleftleftid_V_mathcalB^mathcalCright^Tright^-

Solution:
Proof. Let mathcalBv_...v_n mathcalCw_...w_n. A:id_V_mathcalC^mathcalB pmatrix vdots & & vdots v__mathcalC & hdots & v_n_mathcalC vdots & & vdots pmatrix. Write also Aa_ij. We have v_i_k^n a_kiw_k by definition. Let mathcalC^*w_^*...w_n^* be the dual basis of mathcalC. We apply the previous Lemma to lw_j^* and the basis mathcalB: w_j^*_i^n w_j^*v_i v_i^*_i^n w_j^*left_k^n a_kiw_kright v_i^* _i^n a_jiv_i^* Longrightarrow id_V^*_mathcalB^*^mathcalC^*A^Tleftid_V_mathcalC^mathcalBright ^T only kj remains from the inner
Contained in these collections:

Attributes & Decorations
Tags
basis, eth, hs22, lineare algebra, proof
Content image
Difficulty
(3, default)
Points
0 (default)
Language
ENG (English)
Type
Proof
Creator rk
Decoration
File
Link