Schwerpunkt eines Kreisabschnittes
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Berechne den Schwerpunkt sscxs sscys des folg abgebildeten Kreisabschnittes in Abhängigkeit von delta. center tikzpicturescale. drawcolorgreen!!black -latex -.--. noderight x; drawcolorgreen!!black -latex -.--. nodeabove y; drawcolorblue - arc::; drawcolorgreen!!black dashed -..---.-. nodebelow -delta; drawcolorgreen!!black dashed ..--.-. nodebelow delta; filldrawfillred!!white opacity. -.. arc:: -- cycle; tikzpicture center
Solution:
M rho _V ddV rho _x _y _z ddxddyddz rho _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy _^d ddz rho d _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy rho d _-delta^delta ddx y_sqrt-delta^^sqrt-x^ rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta sqrt-x^ddx - rho d _-delta^deltasqrt-delta^ ddx rho d _-delta^delta sqrt-x^ddx - rho d sqrt-delta^ x_-delta^delta rho d _-delta^delta sqrt-x^ddx - delta rho d sqrt-delta^ rho d leftfracleftxsqrt-x^+arcsin xrightright_-delta^delta - delta rho d sqrt-delta^ rho d deltasqrt-delta^+arcsindelta - delta rho d sqrt-delta^ rho d arcsindelta - rho d delta sqrt-delta^ rho d leftarcsindelta - delta sqrt-delta^right Die Schwerpunktskoordinate ist somit: sscys fracM _M y ddm fracM _V y rho ddV fracrhoM _x _y _z y ddxddyddz fracrhoM _-delta^delta _sqrt-delta^^sqrt-x^ _^d y ddxddyddz fracrhoM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy _^d ddz fracrho dM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy fracrho dM _-delta^delta ddx leftfrac y^right_sqrt-delta^^sqrt-x^ fracrho dM _-delta^delta ddx leftfrac -x^-frac-delta^right fracrho dM _-delta^delta fracleftdelta^-x^right ddx fracrho dM frac leftdelta^x-fracx^right_-delta^delta fracrho dM frac delta^ fracrho drho d leftarcsindelta - delta sqrt-delta^right frac delta^ frac fracdelta^arcsindelta - delta sqrt-delta^right
Berechne den Schwerpunkt sscxs sscys des folg abgebildeten Kreisabschnittes in Abhängigkeit von delta. center tikzpicturescale. drawcolorgreen!!black -latex -.--. noderight x; drawcolorgreen!!black -latex -.--. nodeabove y; drawcolorblue - arc::; drawcolorgreen!!black dashed -..---.-. nodebelow -delta; drawcolorgreen!!black dashed ..--.-. nodebelow delta; filldrawfillred!!white opacity. -.. arc:: -- cycle; tikzpicture center
Solution:
M rho _V ddV rho _x _y _z ddxddyddz rho _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy _^d ddz rho d _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy rho d _-delta^delta ddx y_sqrt-delta^^sqrt-x^ rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta sqrt-x^ddx - rho d _-delta^deltasqrt-delta^ ddx rho d _-delta^delta sqrt-x^ddx - rho d sqrt-delta^ x_-delta^delta rho d _-delta^delta sqrt-x^ddx - delta rho d sqrt-delta^ rho d leftfracleftxsqrt-x^+arcsin xrightright_-delta^delta - delta rho d sqrt-delta^ rho d deltasqrt-delta^+arcsindelta - delta rho d sqrt-delta^ rho d arcsindelta - rho d delta sqrt-delta^ rho d leftarcsindelta - delta sqrt-delta^right Die Schwerpunktskoordinate ist somit: sscys fracM _M y ddm fracM _V y rho ddV fracrhoM _x _y _z y ddxddyddz fracrhoM _-delta^delta _sqrt-delta^^sqrt-x^ _^d y ddxddyddz fracrhoM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy _^d ddz fracrho dM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy fracrho dM _-delta^delta ddx leftfrac y^right_sqrt-delta^^sqrt-x^ fracrho dM _-delta^delta ddx leftfrac -x^-frac-delta^right fracrho dM _-delta^delta fracleftdelta^-x^right ddx fracrho dM frac leftdelta^x-fracx^right_-delta^delta fracrho dM frac delta^ fracrho drho d leftarcsindelta - delta sqrt-delta^right frac delta^ frac fracdelta^arcsindelta - delta sqrt-delta^right
Meta Information
Exercise:
Berechne den Schwerpunkt sscxs sscys des folg abgebildeten Kreisabschnittes in Abhängigkeit von delta. center tikzpicturescale. drawcolorgreen!!black -latex -.--. noderight x; drawcolorgreen!!black -latex -.--. nodeabove y; drawcolorblue - arc::; drawcolorgreen!!black dashed -..---.-. nodebelow -delta; drawcolorgreen!!black dashed ..--.-. nodebelow delta; filldrawfillred!!white opacity. -.. arc:: -- cycle; tikzpicture center
Solution:
M rho _V ddV rho _x _y _z ddxddyddz rho _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy _^d ddz rho d _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy rho d _-delta^delta ddx y_sqrt-delta^^sqrt-x^ rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta sqrt-x^ddx - rho d _-delta^deltasqrt-delta^ ddx rho d _-delta^delta sqrt-x^ddx - rho d sqrt-delta^ x_-delta^delta rho d _-delta^delta sqrt-x^ddx - delta rho d sqrt-delta^ rho d leftfracleftxsqrt-x^+arcsin xrightright_-delta^delta - delta rho d sqrt-delta^ rho d deltasqrt-delta^+arcsindelta - delta rho d sqrt-delta^ rho d arcsindelta - rho d delta sqrt-delta^ rho d leftarcsindelta - delta sqrt-delta^right Die Schwerpunktskoordinate ist somit: sscys fracM _M y ddm fracM _V y rho ddV fracrhoM _x _y _z y ddxddyddz fracrhoM _-delta^delta _sqrt-delta^^sqrt-x^ _^d y ddxddyddz fracrhoM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy _^d ddz fracrho dM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy fracrho dM _-delta^delta ddx leftfrac y^right_sqrt-delta^^sqrt-x^ fracrho dM _-delta^delta ddx leftfrac -x^-frac-delta^right fracrho dM _-delta^delta fracleftdelta^-x^right ddx fracrho dM frac leftdelta^x-fracx^right_-delta^delta fracrho dM frac delta^ fracrho drho d leftarcsindelta - delta sqrt-delta^right frac delta^ frac fracdelta^arcsindelta - delta sqrt-delta^right
Berechne den Schwerpunkt sscxs sscys des folg abgebildeten Kreisabschnittes in Abhängigkeit von delta. center tikzpicturescale. drawcolorgreen!!black -latex -.--. noderight x; drawcolorgreen!!black -latex -.--. nodeabove y; drawcolorblue - arc::; drawcolorgreen!!black dashed -..---.-. nodebelow -delta; drawcolorgreen!!black dashed ..--.-. nodebelow delta; filldrawfillred!!white opacity. -.. arc:: -- cycle; tikzpicture center
Solution:
M rho _V ddV rho _x _y _z ddxddyddz rho _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy _^d ddz rho d _-delta^delta ddx _sqrt-delta^^sqrt-x^ ddy rho d _-delta^delta ddx y_sqrt-delta^^sqrt-x^ rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta leftsqrt-x^ - sqrt-delta^ rightddx rho d _-delta^delta sqrt-x^ddx - rho d _-delta^deltasqrt-delta^ ddx rho d _-delta^delta sqrt-x^ddx - rho d sqrt-delta^ x_-delta^delta rho d _-delta^delta sqrt-x^ddx - delta rho d sqrt-delta^ rho d leftfracleftxsqrt-x^+arcsin xrightright_-delta^delta - delta rho d sqrt-delta^ rho d deltasqrt-delta^+arcsindelta - delta rho d sqrt-delta^ rho d arcsindelta - rho d delta sqrt-delta^ rho d leftarcsindelta - delta sqrt-delta^right Die Schwerpunktskoordinate ist somit: sscys fracM _M y ddm fracM _V y rho ddV fracrhoM _x _y _z y ddxddyddz fracrhoM _-delta^delta _sqrt-delta^^sqrt-x^ _^d y ddxddyddz fracrhoM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy _^d ddz fracrho dM _-delta^delta ddx _sqrt-delta^^sqrt-x^ y ddy fracrho dM _-delta^delta ddx leftfrac y^right_sqrt-delta^^sqrt-x^ fracrho dM _-delta^delta ddx leftfrac -x^-frac-delta^right fracrho dM _-delta^delta fracleftdelta^-x^right ddx fracrho dM frac leftdelta^x-fracx^right_-delta^delta fracrho dM frac delta^ fracrho drho d leftarcsindelta - delta sqrt-delta^right frac delta^ frac fracdelta^arcsindelta - delta sqrt-delta^right
Contained in these collections:
-
Schwerpunkt 3 by uz