Soap Film
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
In a soap film yellow light laO is cancelled due to destructive erference. Calculate the thickness of the soap film several solutions.
Solution:
The refractive index of soap solution is very close to that of water. At a wavelength of laO the value is nnO. vspacemm The part of the incoming wave reflected when it first hits the surface of the soap film experiences a phaseshift of pi. The part reflected when the wave gets to the other side of the soap film travels an additional distance d_ h where h is the thickness of the film. The phase difference between the two parts of the wave can be expressed as Deltaphi pifrachlambda'-pipifrach nlambda-pi where n is the refractive index of the soap solution. The condition for destructive erference is Deltaphi pifrach nlambda-pi m+ pi Longrightarrow fracnlambda h- m+ with minZ. Solving for h yields h hF For mmO we get h_ fracfraclan resulthP For m and m we get h_haP and h_hbP respectively.
In a soap film yellow light laO is cancelled due to destructive erference. Calculate the thickness of the soap film several solutions.
Solution:
The refractive index of soap solution is very close to that of water. At a wavelength of laO the value is nnO. vspacemm The part of the incoming wave reflected when it first hits the surface of the soap film experiences a phaseshift of pi. The part reflected when the wave gets to the other side of the soap film travels an additional distance d_ h where h is the thickness of the film. The phase difference between the two parts of the wave can be expressed as Deltaphi pifrachlambda'-pipifrach nlambda-pi where n is the refractive index of the soap solution. The condition for destructive erference is Deltaphi pifrach nlambda-pi m+ pi Longrightarrow fracnlambda h- m+ with minZ. Solving for h yields h hF For mmO we get h_ fracfraclan resulthP For m and m we get h_haP and h_hbP respectively.
Meta Information
Exercise:
In a soap film yellow light laO is cancelled due to destructive erference. Calculate the thickness of the soap film several solutions.
Solution:
The refractive index of soap solution is very close to that of water. At a wavelength of laO the value is nnO. vspacemm The part of the incoming wave reflected when it first hits the surface of the soap film experiences a phaseshift of pi. The part reflected when the wave gets to the other side of the soap film travels an additional distance d_ h where h is the thickness of the film. The phase difference between the two parts of the wave can be expressed as Deltaphi pifrachlambda'-pipifrach nlambda-pi where n is the refractive index of the soap solution. The condition for destructive erference is Deltaphi pifrach nlambda-pi m+ pi Longrightarrow fracnlambda h- m+ with minZ. Solving for h yields h hF For mmO we get h_ fracfraclan resulthP For m and m we get h_haP and h_hbP respectively.
In a soap film yellow light laO is cancelled due to destructive erference. Calculate the thickness of the soap film several solutions.
Solution:
The refractive index of soap solution is very close to that of water. At a wavelength of laO the value is nnO. vspacemm The part of the incoming wave reflected when it first hits the surface of the soap film experiences a phaseshift of pi. The part reflected when the wave gets to the other side of the soap film travels an additional distance d_ h where h is the thickness of the film. The phase difference between the two parts of the wave can be expressed as Deltaphi pifrachlambda'-pipifrach nlambda-pi where n is the refractive index of the soap solution. The condition for destructive erference is Deltaphi pifrach nlambda-pi m+ pi Longrightarrow fracnlambda h- m+ with minZ. Solving for h yields h hF For mmO we get h_ fracfraclan resulthP For m and m we get h_haP and h_hbP respectively.
Contained in these collections: