Softair
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Zeit \(t\) / Energie \(E\) / Geschwindigkeit \(v\) / Strecke \(s\) / Beschleunigung \(a\) /
The following formulas must be used to solve the exercise:
\(s = \dfrac{1}{2}at^2+v_0 t \quad \) \(s = vt \quad \) \(E_{\rm \scriptscriptstyle kin} = \dfrac12 mv^2 \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine Softair Gun mit mJ Energie verschiesst Plastikkugeln mit einer Masse von mg. Wie weit fliegen die Kugeln im günstigsten Fall wenn sie auf einer Höhe von cm abgeschossen werden?
Solution:
abcliste abc Die Mündungsgeschwindigkeit der Kugeln ist im Idealfall v sqrtfracEkinm pq.. abc Bis die Kugeln aus der Höhe pq.m im freien Fall den Boden erreichen vergeht die Zeit t sqrtfracsg pq.s. In dieser Zeit fliegen die Kugeln -- im Idealfall -- mit der horizontalen Geschwindigkeit aus a eine Strecke von pq.m. In Wirklichkeit ist die Strecke aufgrund der Reibung bedeut kleiner. abcliste
Eine Softair Gun mit mJ Energie verschiesst Plastikkugeln mit einer Masse von mg. Wie weit fliegen die Kugeln im günstigsten Fall wenn sie auf einer Höhe von cm abgeschossen werden?
Solution:
abcliste abc Die Mündungsgeschwindigkeit der Kugeln ist im Idealfall v sqrtfracEkinm pq.. abc Bis die Kugeln aus der Höhe pq.m im freien Fall den Boden erreichen vergeht die Zeit t sqrtfracsg pq.s. In dieser Zeit fliegen die Kugeln -- im Idealfall -- mit der horizontalen Geschwindigkeit aus a eine Strecke von pq.m. In Wirklichkeit ist die Strecke aufgrund der Reibung bedeut kleiner. abcliste
Meta Information
Exercise:
Eine Softair Gun mit mJ Energie verschiesst Plastikkugeln mit einer Masse von mg. Wie weit fliegen die Kugeln im günstigsten Fall wenn sie auf einer Höhe von cm abgeschossen werden?
Solution:
abcliste abc Die Mündungsgeschwindigkeit der Kugeln ist im Idealfall v sqrtfracEkinm pq.. abc Bis die Kugeln aus der Höhe pq.m im freien Fall den Boden erreichen vergeht die Zeit t sqrtfracsg pq.s. In dieser Zeit fliegen die Kugeln -- im Idealfall -- mit der horizontalen Geschwindigkeit aus a eine Strecke von pq.m. In Wirklichkeit ist die Strecke aufgrund der Reibung bedeut kleiner. abcliste
Eine Softair Gun mit mJ Energie verschiesst Plastikkugeln mit einer Masse von mg. Wie weit fliegen die Kugeln im günstigsten Fall wenn sie auf einer Höhe von cm abgeschossen werden?
Solution:
abcliste abc Die Mündungsgeschwindigkeit der Kugeln ist im Idealfall v sqrtfracEkinm pq.. abc Bis die Kugeln aus der Höhe pq.m im freien Fall den Boden erreichen vergeht die Zeit t sqrtfracsg pq.s. In dieser Zeit fliegen die Kugeln -- im Idealfall -- mit der horizontalen Geschwindigkeit aus a eine Strecke von pq.m. In Wirklichkeit ist die Strecke aufgrund der Reibung bedeut kleiner. abcliste
Contained in these collections:
-
Horizontaler Wurf [sx sy vx] und kinetische Energie by TeXercises