Spezielle Relativitätstheorie: Impuls und Kraft 4
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Bei welcher Bahngeschwindigkeit ist das Erdmagnetfeld stark genug ein Elektron auf einer Erdumlaufbahn zu halten? Gehen Sie von einem Bahnradius von km und einer Feldstärke von .sitextensuremathupmu T aus. %mit Dipolformel berechnet Sind die Elektronen so schnell dass man relativistisch rechnen müsste? Sind die Elektronen so langsam dass man die Gravitation berücksichtigen müsste? quad
Solution:
% . Juni Lie. * &e v B fracmv^r Rightarrow v fraceBrm frac.eesiC .eesiT eeesim.eesikg .eeesim/s gg c * Das klassische Resultat zeigt dass man relativistisch rechnen muss. * &e v B gamma m a_z fracsqrt-v^/c^ m fracv^r Rightarrow fraceBrm fracvsqrt-v^/c^ Rightarrow left fraceBrm right^ fracv^-v^/c^ &left fraceBrm right^ - left fraceBrm right^fracv^c^ v^ Rightarrow v^ frac left fraceBrm right^ + left fraceBrm right^ fracc^ Rightarrow v left left fracmeBr right^ + fracc^ right^-/ & v left left frac.eesikg.eesiC .eesiT eeesim right^ + frac.eeesim/s^ right^-/ approx c &-v/c .ee * Da solche Energien kaum vorkommen werden die Elektronen um die Feldlinien herum kreisen. Die Gravitation spielt keine Rolle denn die Geschwindigkeit ist wesentlich grösser als die Fluchtgeschwindigkeit. newpage
Bei welcher Bahngeschwindigkeit ist das Erdmagnetfeld stark genug ein Elektron auf einer Erdumlaufbahn zu halten? Gehen Sie von einem Bahnradius von km und einer Feldstärke von .sitextensuremathupmu T aus. %mit Dipolformel berechnet Sind die Elektronen so schnell dass man relativistisch rechnen müsste? Sind die Elektronen so langsam dass man die Gravitation berücksichtigen müsste? quad
Solution:
% . Juni Lie. * &e v B fracmv^r Rightarrow v fraceBrm frac.eesiC .eesiT eeesim.eesikg .eeesim/s gg c * Das klassische Resultat zeigt dass man relativistisch rechnen muss. * &e v B gamma m a_z fracsqrt-v^/c^ m fracv^r Rightarrow fraceBrm fracvsqrt-v^/c^ Rightarrow left fraceBrm right^ fracv^-v^/c^ &left fraceBrm right^ - left fraceBrm right^fracv^c^ v^ Rightarrow v^ frac left fraceBrm right^ + left fraceBrm right^ fracc^ Rightarrow v left left fracmeBr right^ + fracc^ right^-/ & v left left frac.eesikg.eesiC .eesiT eeesim right^ + frac.eeesim/s^ right^-/ approx c &-v/c .ee * Da solche Energien kaum vorkommen werden die Elektronen um die Feldlinien herum kreisen. Die Gravitation spielt keine Rolle denn die Geschwindigkeit ist wesentlich grösser als die Fluchtgeschwindigkeit. newpage
Meta Information
Exercise:
Bei welcher Bahngeschwindigkeit ist das Erdmagnetfeld stark genug ein Elektron auf einer Erdumlaufbahn zu halten? Gehen Sie von einem Bahnradius von km und einer Feldstärke von .sitextensuremathupmu T aus. %mit Dipolformel berechnet Sind die Elektronen so schnell dass man relativistisch rechnen müsste? Sind die Elektronen so langsam dass man die Gravitation berücksichtigen müsste? quad
Solution:
% . Juni Lie. * &e v B fracmv^r Rightarrow v fraceBrm frac.eesiC .eesiT eeesim.eesikg .eeesim/s gg c * Das klassische Resultat zeigt dass man relativistisch rechnen muss. * &e v B gamma m a_z fracsqrt-v^/c^ m fracv^r Rightarrow fraceBrm fracvsqrt-v^/c^ Rightarrow left fraceBrm right^ fracv^-v^/c^ &left fraceBrm right^ - left fraceBrm right^fracv^c^ v^ Rightarrow v^ frac left fraceBrm right^ + left fraceBrm right^ fracc^ Rightarrow v left left fracmeBr right^ + fracc^ right^-/ & v left left frac.eesikg.eesiC .eesiT eeesim right^ + frac.eeesim/s^ right^-/ approx c &-v/c .ee * Da solche Energien kaum vorkommen werden die Elektronen um die Feldlinien herum kreisen. Die Gravitation spielt keine Rolle denn die Geschwindigkeit ist wesentlich grösser als die Fluchtgeschwindigkeit. newpage
Bei welcher Bahngeschwindigkeit ist das Erdmagnetfeld stark genug ein Elektron auf einer Erdumlaufbahn zu halten? Gehen Sie von einem Bahnradius von km und einer Feldstärke von .sitextensuremathupmu T aus. %mit Dipolformel berechnet Sind die Elektronen so schnell dass man relativistisch rechnen müsste? Sind die Elektronen so langsam dass man die Gravitation berücksichtigen müsste? quad
Solution:
% . Juni Lie. * &e v B fracmv^r Rightarrow v fraceBrm frac.eesiC .eesiT eeesim.eesikg .eeesim/s gg c * Das klassische Resultat zeigt dass man relativistisch rechnen muss. * &e v B gamma m a_z fracsqrt-v^/c^ m fracv^r Rightarrow fraceBrm fracvsqrt-v^/c^ Rightarrow left fraceBrm right^ fracv^-v^/c^ &left fraceBrm right^ - left fraceBrm right^fracv^c^ v^ Rightarrow v^ frac left fraceBrm right^ + left fraceBrm right^ fracc^ Rightarrow v left left fracmeBr right^ + fracc^ right^-/ & v left left frac.eesikg.eesiC .eesiT eeesim right^ + frac.eeesim/s^ right^-/ approx c &-v/c .ee * Da solche Energien kaum vorkommen werden die Elektronen um die Feldlinien herum kreisen. Die Gravitation spielt keine Rolle denn die Geschwindigkeit ist wesentlich grösser als die Fluchtgeschwindigkeit. newpage
Contained in these collections: