Spezielle Relativitätstheorie: Transformationen 12
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Punkt habe im Ausgangssystem die Koordinaten x_ y_ und t_ neq . Berechnen Sie die Zielkoordinaten wenn sie zwei Lorentztransformationen parallel zur x-Achse hereinander durchführen und zwar a zuerst eine Transformation mit Schnelligkeit u dann eine mit v. b zuerst ein Transformation mit v dann eine mit u. c Vergleichen Sie die Resultate.
Solution:
% . Oktober Lie. * &texta zuerst die Transformation mit u &x_ gammau left x_ + u t_ right & gammau u t_ &y_ y_ && &t_ gammau left t_ + fracuc^ x_ right & gammau t_ &x_ gammav left x_ + v t_ right & gammav left gammauut_ + v gammau t_ right & gammaugammav left u + v right t_ &y_ & y_ & &t_ gammavleft t_ + fracvc^ x_ right & gammavleft gammau t_ + fracvc^ gammau u t_ right & gammaugammav left + fracuvc^ right t_ &textb zuerst die Transformation mit v &x_' gammav left x_ + v t_ right & gammav v t_ &y_' y_ && &t_' gammav left t_ + fracvc^ x_ right & gammav t_ &x_' gammau left x_' + u t_' right & gammau left gammavvt_ + u gammav t_ right & gammaugammav left u + v right t_ &y_' & y_' & &t_' gammauleft t_' + fracuc^ x_' right & gammauleft gammav t_ + fracuc^ gammav v t_ right & gammaugammav left + fracuvc^ right t_ * c Das Endresultat ist dasselbe. Die Reihenfolge spielt offenbar keine Rolle. Parallele Lorentztransformationen sind vertauschbar. Das hätte man schon dem Resultat von a ansehen können denn u und v treten symmetrisch auf. * fracx_t_ frac gammaugammav left u + v right t_ gammaugammav left + uv/c^ right t_ fracu+v+uv/c^ w qquad textGesetz der eindimensionalen Geschw'transf. * newpage
Ein Punkt habe im Ausgangssystem die Koordinaten x_ y_ und t_ neq . Berechnen Sie die Zielkoordinaten wenn sie zwei Lorentztransformationen parallel zur x-Achse hereinander durchführen und zwar a zuerst eine Transformation mit Schnelligkeit u dann eine mit v. b zuerst ein Transformation mit v dann eine mit u. c Vergleichen Sie die Resultate.
Solution:
% . Oktober Lie. * &texta zuerst die Transformation mit u &x_ gammau left x_ + u t_ right & gammau u t_ &y_ y_ && &t_ gammau left t_ + fracuc^ x_ right & gammau t_ &x_ gammav left x_ + v t_ right & gammav left gammauut_ + v gammau t_ right & gammaugammav left u + v right t_ &y_ & y_ & &t_ gammavleft t_ + fracvc^ x_ right & gammavleft gammau t_ + fracvc^ gammau u t_ right & gammaugammav left + fracuvc^ right t_ &textb zuerst die Transformation mit v &x_' gammav left x_ + v t_ right & gammav v t_ &y_' y_ && &t_' gammav left t_ + fracvc^ x_ right & gammav t_ &x_' gammau left x_' + u t_' right & gammau left gammavvt_ + u gammav t_ right & gammaugammav left u + v right t_ &y_' & y_' & &t_' gammauleft t_' + fracuc^ x_' right & gammauleft gammav t_ + fracuc^ gammav v t_ right & gammaugammav left + fracuvc^ right t_ * c Das Endresultat ist dasselbe. Die Reihenfolge spielt offenbar keine Rolle. Parallele Lorentztransformationen sind vertauschbar. Das hätte man schon dem Resultat von a ansehen können denn u und v treten symmetrisch auf. * fracx_t_ frac gammaugammav left u + v right t_ gammaugammav left + uv/c^ right t_ fracu+v+uv/c^ w qquad textGesetz der eindimensionalen Geschw'transf. * newpage
Meta Information
Exercise:
Ein Punkt habe im Ausgangssystem die Koordinaten x_ y_ und t_ neq . Berechnen Sie die Zielkoordinaten wenn sie zwei Lorentztransformationen parallel zur x-Achse hereinander durchführen und zwar a zuerst eine Transformation mit Schnelligkeit u dann eine mit v. b zuerst ein Transformation mit v dann eine mit u. c Vergleichen Sie die Resultate.
Solution:
% . Oktober Lie. * &texta zuerst die Transformation mit u &x_ gammau left x_ + u t_ right & gammau u t_ &y_ y_ && &t_ gammau left t_ + fracuc^ x_ right & gammau t_ &x_ gammav left x_ + v t_ right & gammav left gammauut_ + v gammau t_ right & gammaugammav left u + v right t_ &y_ & y_ & &t_ gammavleft t_ + fracvc^ x_ right & gammavleft gammau t_ + fracvc^ gammau u t_ right & gammaugammav left + fracuvc^ right t_ &textb zuerst die Transformation mit v &x_' gammav left x_ + v t_ right & gammav v t_ &y_' y_ && &t_' gammav left t_ + fracvc^ x_ right & gammav t_ &x_' gammau left x_' + u t_' right & gammau left gammavvt_ + u gammav t_ right & gammaugammav left u + v right t_ &y_' & y_' & &t_' gammauleft t_' + fracuc^ x_' right & gammauleft gammav t_ + fracuc^ gammav v t_ right & gammaugammav left + fracuvc^ right t_ * c Das Endresultat ist dasselbe. Die Reihenfolge spielt offenbar keine Rolle. Parallele Lorentztransformationen sind vertauschbar. Das hätte man schon dem Resultat von a ansehen können denn u und v treten symmetrisch auf. * fracx_t_ frac gammaugammav left u + v right t_ gammaugammav left + uv/c^ right t_ fracu+v+uv/c^ w qquad textGesetz der eindimensionalen Geschw'transf. * newpage
Ein Punkt habe im Ausgangssystem die Koordinaten x_ y_ und t_ neq . Berechnen Sie die Zielkoordinaten wenn sie zwei Lorentztransformationen parallel zur x-Achse hereinander durchführen und zwar a zuerst eine Transformation mit Schnelligkeit u dann eine mit v. b zuerst ein Transformation mit v dann eine mit u. c Vergleichen Sie die Resultate.
Solution:
% . Oktober Lie. * &texta zuerst die Transformation mit u &x_ gammau left x_ + u t_ right & gammau u t_ &y_ y_ && &t_ gammau left t_ + fracuc^ x_ right & gammau t_ &x_ gammav left x_ + v t_ right & gammav left gammauut_ + v gammau t_ right & gammaugammav left u + v right t_ &y_ & y_ & &t_ gammavleft t_ + fracvc^ x_ right & gammavleft gammau t_ + fracvc^ gammau u t_ right & gammaugammav left + fracuvc^ right t_ &textb zuerst die Transformation mit v &x_' gammav left x_ + v t_ right & gammav v t_ &y_' y_ && &t_' gammav left t_ + fracvc^ x_ right & gammav t_ &x_' gammau left x_' + u t_' right & gammau left gammavvt_ + u gammav t_ right & gammaugammav left u + v right t_ &y_' & y_' & &t_' gammauleft t_' + fracuc^ x_' right & gammauleft gammav t_ + fracuc^ gammav v t_ right & gammaugammav left + fracuvc^ right t_ * c Das Endresultat ist dasselbe. Die Reihenfolge spielt offenbar keine Rolle. Parallele Lorentztransformationen sind vertauschbar. Das hätte man schon dem Resultat von a ansehen können denn u und v treten symmetrisch auf. * fracx_t_ frac gammaugammav left u + v right t_ gammaugammav left + uv/c^ right t_ fracu+v+uv/c^ w qquad textGesetz der eindimensionalen Geschw'transf. * newpage
Contained in these collections: