Spule drehen im Erdfeld
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die Ebene einer Spule mit num Windungen einer Querschnittsfläche von centimetersquared und einem Widerstand von ohm stehe am Äquator mit ihrer Fläche rechtwinklig zum Erdmagnetfeld das dort eine Feldstärke von .microtesla hat. Welche Ladungsmenge fliesst durch die Spule wenn sie plötzlich um degree gedreht wird?
Solution:
newqtyN newqtyAsquaremeter newqtyRohm newqtyBT newqtyTedegree newqtyTzdegree % Einerseits gilt für die induzierte Spannung das Induktionsgesetz von Faraday al sscUind fracDelta PhimDelta t andererseits wissen wir dass für die Spannung im Stromkreis al U R I R fracDelta QDelta t gilt. Setzen wir die beiden Ausdrücke gleich so können wir nach der Ladungsmenge auflösen: al fracDelta PhimDelta t R fracDelta QDelta t Delta Q fracDeltaPhimR. Der magnetische Fluss am Anfang und am Schluss lässt sich durch al Phim NBAcostheta ausdrücken. Daraus folgt solqtyQfracNBAcostheta_ - costheta_RNn*Bn*An*cosdTen-cosdTzn/RnC al Delta Q Qf fracN B A qtycosTe - cosTzR Q QII
Die Ebene einer Spule mit num Windungen einer Querschnittsfläche von centimetersquared und einem Widerstand von ohm stehe am Äquator mit ihrer Fläche rechtwinklig zum Erdmagnetfeld das dort eine Feldstärke von .microtesla hat. Welche Ladungsmenge fliesst durch die Spule wenn sie plötzlich um degree gedreht wird?
Solution:
newqtyN newqtyAsquaremeter newqtyRohm newqtyBT newqtyTedegree newqtyTzdegree % Einerseits gilt für die induzierte Spannung das Induktionsgesetz von Faraday al sscUind fracDelta PhimDelta t andererseits wissen wir dass für die Spannung im Stromkreis al U R I R fracDelta QDelta t gilt. Setzen wir die beiden Ausdrücke gleich so können wir nach der Ladungsmenge auflösen: al fracDelta PhimDelta t R fracDelta QDelta t Delta Q fracDeltaPhimR. Der magnetische Fluss am Anfang und am Schluss lässt sich durch al Phim NBAcostheta ausdrücken. Daraus folgt solqtyQfracNBAcostheta_ - costheta_RNn*Bn*An*cosdTen-cosdTzn/RnC al Delta Q Qf fracN B A qtycosTe - cosTzR Q QII
Meta Information
Exercise:
Die Ebene einer Spule mit num Windungen einer Querschnittsfläche von centimetersquared und einem Widerstand von ohm stehe am Äquator mit ihrer Fläche rechtwinklig zum Erdmagnetfeld das dort eine Feldstärke von .microtesla hat. Welche Ladungsmenge fliesst durch die Spule wenn sie plötzlich um degree gedreht wird?
Solution:
newqtyN newqtyAsquaremeter newqtyRohm newqtyBT newqtyTedegree newqtyTzdegree % Einerseits gilt für die induzierte Spannung das Induktionsgesetz von Faraday al sscUind fracDelta PhimDelta t andererseits wissen wir dass für die Spannung im Stromkreis al U R I R fracDelta QDelta t gilt. Setzen wir die beiden Ausdrücke gleich so können wir nach der Ladungsmenge auflösen: al fracDelta PhimDelta t R fracDelta QDelta t Delta Q fracDeltaPhimR. Der magnetische Fluss am Anfang und am Schluss lässt sich durch al Phim NBAcostheta ausdrücken. Daraus folgt solqtyQfracNBAcostheta_ - costheta_RNn*Bn*An*cosdTen-cosdTzn/RnC al Delta Q Qf fracN B A qtycosTe - cosTzR Q QII
Die Ebene einer Spule mit num Windungen einer Querschnittsfläche von centimetersquared und einem Widerstand von ohm stehe am Äquator mit ihrer Fläche rechtwinklig zum Erdmagnetfeld das dort eine Feldstärke von .microtesla hat. Welche Ladungsmenge fliesst durch die Spule wenn sie plötzlich um degree gedreht wird?
Solution:
newqtyN newqtyAsquaremeter newqtyRohm newqtyBT newqtyTedegree newqtyTzdegree % Einerseits gilt für die induzierte Spannung das Induktionsgesetz von Faraday al sscUind fracDelta PhimDelta t andererseits wissen wir dass für die Spannung im Stromkreis al U R I R fracDelta QDelta t gilt. Setzen wir die beiden Ausdrücke gleich so können wir nach der Ladungsmenge auflösen: al fracDelta PhimDelta t R fracDelta QDelta t Delta Q fracDeltaPhimR. Der magnetische Fluss am Anfang und am Schluss lässt sich durch al Phim NBAcostheta ausdrücken. Daraus folgt solqtyQfracNBAcostheta_ - costheta_RNn*Bn*An*cosdTen-cosdTzn/RnC al Delta Q Qf fracN B A qtycosTe - cosTzR Q QII
Contained in these collections:
-
Spule im Erdfeld by TeXercises