Stossfuge bei der Eisenbahn
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
LosHawlos, , 2022, digital photograph, Wikipedia
<Wikipedia> (retrieved on November 15, 2023)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die Stossfuge zwischen den je lzO langen Eisenbahnschienen alpO verengt sich bei Erwärmung von TaO auf TbO um % ihres Anfangswertes. Bei welcher Temperatur schliessen sich die Schienen völlig zusammen?
Solution:
Falls sich die Temperatur der Schiene um dT erhöht schliesst sich die Fuge um netO; in Formeln: ell_ alpha Deltatheta_ eta Deltaell Die Fuge ist also SolQtydllzX*alpX*dTX/netXm Deltaell ell_ alpha fracDeltatheta_eta lz alp fracdTnet dl gross. Vollständig geschlossen ist sie bei SolQtydTvdlX/lzX/alpXcelsius Deltatheta fracDelta ellell_ alpha fracell_ alpha fracDeltatheta_etaell_ alpha fracDeltatheta_eta fracdllz alp dTv Temperaturerhöhung was bei SolQtyTeTaX+dTvXcelsius theta_e theta_a + Deltatheta theta_a + fracDeltatheta_eta theta_a + fractheta_b-theta_aeta Ta + dTv TeII der Fall ist.
Die Stossfuge zwischen den je lzO langen Eisenbahnschienen alpO verengt sich bei Erwärmung von TaO auf TbO um % ihres Anfangswertes. Bei welcher Temperatur schliessen sich die Schienen völlig zusammen?
Solution:
Falls sich die Temperatur der Schiene um dT erhöht schliesst sich die Fuge um netO; in Formeln: ell_ alpha Deltatheta_ eta Deltaell Die Fuge ist also SolQtydllzX*alpX*dTX/netXm Deltaell ell_ alpha fracDeltatheta_eta lz alp fracdTnet dl gross. Vollständig geschlossen ist sie bei SolQtydTvdlX/lzX/alpXcelsius Deltatheta fracDelta ellell_ alpha fracell_ alpha fracDeltatheta_etaell_ alpha fracDeltatheta_eta fracdllz alp dTv Temperaturerhöhung was bei SolQtyTeTaX+dTvXcelsius theta_e theta_a + Deltatheta theta_a + fracDeltatheta_eta theta_a + fractheta_b-theta_aeta Ta + dTv TeII der Fall ist.
Meta Information
Exercise:
Die Stossfuge zwischen den je lzO langen Eisenbahnschienen alpO verengt sich bei Erwärmung von TaO auf TbO um % ihres Anfangswertes. Bei welcher Temperatur schliessen sich die Schienen völlig zusammen?
Solution:
Falls sich die Temperatur der Schiene um dT erhöht schliesst sich die Fuge um netO; in Formeln: ell_ alpha Deltatheta_ eta Deltaell Die Fuge ist also SolQtydllzX*alpX*dTX/netXm Deltaell ell_ alpha fracDeltatheta_eta lz alp fracdTnet dl gross. Vollständig geschlossen ist sie bei SolQtydTvdlX/lzX/alpXcelsius Deltatheta fracDelta ellell_ alpha fracell_ alpha fracDeltatheta_etaell_ alpha fracDeltatheta_eta fracdllz alp dTv Temperaturerhöhung was bei SolQtyTeTaX+dTvXcelsius theta_e theta_a + Deltatheta theta_a + fracDeltatheta_eta theta_a + fractheta_b-theta_aeta Ta + dTv TeII der Fall ist.
Die Stossfuge zwischen den je lzO langen Eisenbahnschienen alpO verengt sich bei Erwärmung von TaO auf TbO um % ihres Anfangswertes. Bei welcher Temperatur schliessen sich die Schienen völlig zusammen?
Solution:
Falls sich die Temperatur der Schiene um dT erhöht schliesst sich die Fuge um netO; in Formeln: ell_ alpha Deltatheta_ eta Deltaell Die Fuge ist also SolQtydllzX*alpX*dTX/netXm Deltaell ell_ alpha fracDeltatheta_eta lz alp fracdTnet dl gross. Vollständig geschlossen ist sie bei SolQtydTvdlX/lzX/alpXcelsius Deltatheta fracDelta ellell_ alpha fracell_ alpha fracDeltatheta_etaell_ alpha fracDeltatheta_eta fracdllz alp dTv Temperaturerhöhung was bei SolQtyTeTaX+dTvXcelsius theta_e theta_a + Deltatheta theta_a + fracDeltatheta_eta theta_a + fractheta_b-theta_aeta Ta + dTv TeII der Fall ist.
Contained in these collections:
Asked Quantity:
Temperatur \(T\)
in
Kelvin \(\rm K\)
Physical Quantity
Unit