Strömungsgeschwindigkeit
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Für eine Dopplersonographie werden Ultraschallwellen der Frequenz fO in ein Blutgefäss eingekoppelt. Die gemessene Dopplerverschiebung bei der Reflexion an den Blutkörperchen beträgt dfO. Welche Strömungsgeschwindigkeit lässt sich daraus ableiten? Unter welcher Bedingung?
Solution:
Da die Frequenzverschiebung deutlich kleiner als die Frequenz des Ultraschallgebers ist kann die Näherungsformel für die Dopplerverschiebung verwet werden: Delta f &cong ffracvc Es folgt für die Strömungsgeschwindigkeit v &cong vF vWtimesfracdftimesf v approx resultvP- Ohne die Näherung gilt f_R ffracv_S+vv_S-v and the frequency shift Delta f f_R-f fleftfracv_S+vv_S-v-right ffracv_S+v-v_S-vv_S-vffracvv_S-v Multiplizieren der Gleichung mit v_S-v führt zu Delta fv_S-v f v which can be solved for v: v vexF vWtimesfracdff+df vex approx resultvexP- was mit der Näherungslösung konsistent ist. vspacemm Die Rechnungen gelten unter der Annahme dass die Richtung der Schallwellen parallel zur Strömungsrichtung ist. Für andere Winkel ist die tatsächliche Strömungsgeschwindigkeit grösser als die Rechnung vermuten lässt.
Für eine Dopplersonographie werden Ultraschallwellen der Frequenz fO in ein Blutgefäss eingekoppelt. Die gemessene Dopplerverschiebung bei der Reflexion an den Blutkörperchen beträgt dfO. Welche Strömungsgeschwindigkeit lässt sich daraus ableiten? Unter welcher Bedingung?
Solution:
Da die Frequenzverschiebung deutlich kleiner als die Frequenz des Ultraschallgebers ist kann die Näherungsformel für die Dopplerverschiebung verwet werden: Delta f &cong ffracvc Es folgt für die Strömungsgeschwindigkeit v &cong vF vWtimesfracdftimesf v approx resultvP- Ohne die Näherung gilt f_R ffracv_S+vv_S-v and the frequency shift Delta f f_R-f fleftfracv_S+vv_S-v-right ffracv_S+v-v_S-vv_S-vffracvv_S-v Multiplizieren der Gleichung mit v_S-v führt zu Delta fv_S-v f v which can be solved for v: v vexF vWtimesfracdff+df vex approx resultvexP- was mit der Näherungslösung konsistent ist. vspacemm Die Rechnungen gelten unter der Annahme dass die Richtung der Schallwellen parallel zur Strömungsrichtung ist. Für andere Winkel ist die tatsächliche Strömungsgeschwindigkeit grösser als die Rechnung vermuten lässt.
Meta Information
Exercise:
Für eine Dopplersonographie werden Ultraschallwellen der Frequenz fO in ein Blutgefäss eingekoppelt. Die gemessene Dopplerverschiebung bei der Reflexion an den Blutkörperchen beträgt dfO. Welche Strömungsgeschwindigkeit lässt sich daraus ableiten? Unter welcher Bedingung?
Solution:
Da die Frequenzverschiebung deutlich kleiner als die Frequenz des Ultraschallgebers ist kann die Näherungsformel für die Dopplerverschiebung verwet werden: Delta f &cong ffracvc Es folgt für die Strömungsgeschwindigkeit v &cong vF vWtimesfracdftimesf v approx resultvP- Ohne die Näherung gilt f_R ffracv_S+vv_S-v and the frequency shift Delta f f_R-f fleftfracv_S+vv_S-v-right ffracv_S+v-v_S-vv_S-vffracvv_S-v Multiplizieren der Gleichung mit v_S-v führt zu Delta fv_S-v f v which can be solved for v: v vexF vWtimesfracdff+df vex approx resultvexP- was mit der Näherungslösung konsistent ist. vspacemm Die Rechnungen gelten unter der Annahme dass die Richtung der Schallwellen parallel zur Strömungsrichtung ist. Für andere Winkel ist die tatsächliche Strömungsgeschwindigkeit grösser als die Rechnung vermuten lässt.
Für eine Dopplersonographie werden Ultraschallwellen der Frequenz fO in ein Blutgefäss eingekoppelt. Die gemessene Dopplerverschiebung bei der Reflexion an den Blutkörperchen beträgt dfO. Welche Strömungsgeschwindigkeit lässt sich daraus ableiten? Unter welcher Bedingung?
Solution:
Da die Frequenzverschiebung deutlich kleiner als die Frequenz des Ultraschallgebers ist kann die Näherungsformel für die Dopplerverschiebung verwet werden: Delta f &cong ffracvc Es folgt für die Strömungsgeschwindigkeit v &cong vF vWtimesfracdftimesf v approx resultvP- Ohne die Näherung gilt f_R ffracv_S+vv_S-v and the frequency shift Delta f f_R-f fleftfracv_S+vv_S-v-right ffracv_S+v-v_S-vv_S-vffracvv_S-v Multiplizieren der Gleichung mit v_S-v führt zu Delta fv_S-v f v which can be solved for v: v vexF vWtimesfracdff+df vex approx resultvexP- was mit der Näherungslösung konsistent ist. vspacemm Die Rechnungen gelten unter der Annahme dass die Richtung der Schallwellen parallel zur Strömungsrichtung ist. Für andere Winkel ist die tatsächliche Strömungsgeschwindigkeit grösser als die Rechnung vermuten lässt.
Contained in these collections:
-
Ultraschall by by