Sylvester-Bleigiessen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Temperatur \(T\) / Wärme \(Q\) / spezifische latente Wärme \(L\) / Wärmekapazität \(c\) /
The following formulas must be used to solve the exercise:
\(Q = c \cdot m \cdot \Delta\vartheta \quad \) \(Q = m \cdot L_{\scriptscriptstyle\rm f} \quad \) \(\sum Q^\nearrow \stackrel{!}{=} \sum Q^\swarrow \quad \)
No explanation / solution video for this exercise has yet been created.
But there is a video to a similar exercise:
In case your browser prevents YouTube embedding: https://youtu.be/KpK02We2DB4
But there is a video to a similar exercise:
Exercise:
Beim Sylvester-Bleigiessen wird flüssiges Blei welches gerade bei .degreeCelsius geschmolzen ist in eine Schale mit g Wasser bei degreeCelsius Temperatur gegossen worauf sich eine Mischtemperatur von degreeCelsius einstellt. Berechne wie viel Blei in das Wasser gegossen wurde. Blei hat eine spezifische Wärmekapazität von jouleperkilogramperkelvin sowie eine Schmelzwärme von .kilojouleperkilogram.
Solution:
Das gerade bei theta_f.degreeCelsius geschmolzene Blei erstarrt erst wieder und kühlt dann in seiner festen Form ab. Dabei gibt es die Wärme ab welche vom Wasser aufgenommen wird: Q^nearrow Q^swarrow Q_textscriptsizeBlei Q_textscriptsizeWasser Q_f + Q_Delta Q_Delta textcolorredm_B L_f + c_B textcolorredm_Btheta_f-theta_m c mtheta_m -theta_ cline- textcolorredm_B L_f + c_Btheta_f-theta_m c mtheta_m -theta_ textcolorredm_B fracc mtheta_m -theta_L_f + c_Btheta_f-theta_m .kg
Beim Sylvester-Bleigiessen wird flüssiges Blei welches gerade bei .degreeCelsius geschmolzen ist in eine Schale mit g Wasser bei degreeCelsius Temperatur gegossen worauf sich eine Mischtemperatur von degreeCelsius einstellt. Berechne wie viel Blei in das Wasser gegossen wurde. Blei hat eine spezifische Wärmekapazität von jouleperkilogramperkelvin sowie eine Schmelzwärme von .kilojouleperkilogram.
Solution:
Das gerade bei theta_f.degreeCelsius geschmolzene Blei erstarrt erst wieder und kühlt dann in seiner festen Form ab. Dabei gibt es die Wärme ab welche vom Wasser aufgenommen wird: Q^nearrow Q^swarrow Q_textscriptsizeBlei Q_textscriptsizeWasser Q_f + Q_Delta Q_Delta textcolorredm_B L_f + c_B textcolorredm_Btheta_f-theta_m c mtheta_m -theta_ cline- textcolorredm_B L_f + c_Btheta_f-theta_m c mtheta_m -theta_ textcolorredm_B fracc mtheta_m -theta_L_f + c_Btheta_f-theta_m .kg
Meta Information
Exercise:
Beim Sylvester-Bleigiessen wird flüssiges Blei welches gerade bei .degreeCelsius geschmolzen ist in eine Schale mit g Wasser bei degreeCelsius Temperatur gegossen worauf sich eine Mischtemperatur von degreeCelsius einstellt. Berechne wie viel Blei in das Wasser gegossen wurde. Blei hat eine spezifische Wärmekapazität von jouleperkilogramperkelvin sowie eine Schmelzwärme von .kilojouleperkilogram.
Solution:
Das gerade bei theta_f.degreeCelsius geschmolzene Blei erstarrt erst wieder und kühlt dann in seiner festen Form ab. Dabei gibt es die Wärme ab welche vom Wasser aufgenommen wird: Q^nearrow Q^swarrow Q_textscriptsizeBlei Q_textscriptsizeWasser Q_f + Q_Delta Q_Delta textcolorredm_B L_f + c_B textcolorredm_Btheta_f-theta_m c mtheta_m -theta_ cline- textcolorredm_B L_f + c_Btheta_f-theta_m c mtheta_m -theta_ textcolorredm_B fracc mtheta_m -theta_L_f + c_Btheta_f-theta_m .kg
Beim Sylvester-Bleigiessen wird flüssiges Blei welches gerade bei .degreeCelsius geschmolzen ist in eine Schale mit g Wasser bei degreeCelsius Temperatur gegossen worauf sich eine Mischtemperatur von degreeCelsius einstellt. Berechne wie viel Blei in das Wasser gegossen wurde. Blei hat eine spezifische Wärmekapazität von jouleperkilogramperkelvin sowie eine Schmelzwärme von .kilojouleperkilogram.
Solution:
Das gerade bei theta_f.degreeCelsius geschmolzene Blei erstarrt erst wieder und kühlt dann in seiner festen Form ab. Dabei gibt es die Wärme ab welche vom Wasser aufgenommen wird: Q^nearrow Q^swarrow Q_textscriptsizeBlei Q_textscriptsizeWasser Q_f + Q_Delta Q_Delta textcolorredm_B L_f + c_B textcolorredm_Btheta_f-theta_m c mtheta_m -theta_ cline- textcolorredm_B L_f + c_Btheta_f-theta_m c mtheta_m -theta_ textcolorredm_B fracc mtheta_m -theta_L_f + c_Btheta_f-theta_m .kg
Contained in these collections:
-
Mischen mit Erstarrungswärme by TeXercises
Asked Quantity:
Masse \(m\)
in
Kilogramm \(\rm kg\)
Physical Quantity
Eigenschaft der Materie
Unit
Base?
SI?
Metric?
Coherent?
Imperial?