Thermodynamik: Verbrennungswärme 23
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Staubexplosionen sind gefürchtet. Schätzen Sie den Druckanstieg ab wenn sich aufgewirbelter Kohlenstaub sig/m^ Heizwert von Anthrazit in einem Bergwerk entzündet. Nehmen Sie an dass währ der Explosion das Luftvolumen konstant bleibt. % Die Explosionsgrenze ist laut Internet g/m^ bis g/m^.
Solution:
% . Okt. Lie. Kohle ist fast reiner Kohlenstoff. Bei der Verbrennung C + O_ rightarrow CO_ bleibt die Zahl der Gasteilchen in der Luft konstant. Wir können so tun als ob die freigesetzte Wärme die Luft erhitzt. * &Delta Q m_KH c_Lm_LDelta T &p propto T rightarrow fracp_p_ fracT_T_ rightarrow fracDelta pp_ fracDelta TT_ Rightarrow Delta p fracp_T_ Delta T fracp_T_ fracm_K Hc_Lm_L &Delta p frac.sibar.siK fracsig eeesiJ/kgsiJ/kgK sig uuline.sibar quad textDie Grössenordnung stimmt. * newpage
Staubexplosionen sind gefürchtet. Schätzen Sie den Druckanstieg ab wenn sich aufgewirbelter Kohlenstaub sig/m^ Heizwert von Anthrazit in einem Bergwerk entzündet. Nehmen Sie an dass währ der Explosion das Luftvolumen konstant bleibt. % Die Explosionsgrenze ist laut Internet g/m^ bis g/m^.
Solution:
% . Okt. Lie. Kohle ist fast reiner Kohlenstoff. Bei der Verbrennung C + O_ rightarrow CO_ bleibt die Zahl der Gasteilchen in der Luft konstant. Wir können so tun als ob die freigesetzte Wärme die Luft erhitzt. * &Delta Q m_KH c_Lm_LDelta T &p propto T rightarrow fracp_p_ fracT_T_ rightarrow fracDelta pp_ fracDelta TT_ Rightarrow Delta p fracp_T_ Delta T fracp_T_ fracm_K Hc_Lm_L &Delta p frac.sibar.siK fracsig eeesiJ/kgsiJ/kgK sig uuline.sibar quad textDie Grössenordnung stimmt. * newpage
Meta Information
Exercise:
Staubexplosionen sind gefürchtet. Schätzen Sie den Druckanstieg ab wenn sich aufgewirbelter Kohlenstaub sig/m^ Heizwert von Anthrazit in einem Bergwerk entzündet. Nehmen Sie an dass währ der Explosion das Luftvolumen konstant bleibt. % Die Explosionsgrenze ist laut Internet g/m^ bis g/m^.
Solution:
% . Okt. Lie. Kohle ist fast reiner Kohlenstoff. Bei der Verbrennung C + O_ rightarrow CO_ bleibt die Zahl der Gasteilchen in der Luft konstant. Wir können so tun als ob die freigesetzte Wärme die Luft erhitzt. * &Delta Q m_KH c_Lm_LDelta T &p propto T rightarrow fracp_p_ fracT_T_ rightarrow fracDelta pp_ fracDelta TT_ Rightarrow Delta p fracp_T_ Delta T fracp_T_ fracm_K Hc_Lm_L &Delta p frac.sibar.siK fracsig eeesiJ/kgsiJ/kgK sig uuline.sibar quad textDie Grössenordnung stimmt. * newpage
Staubexplosionen sind gefürchtet. Schätzen Sie den Druckanstieg ab wenn sich aufgewirbelter Kohlenstaub sig/m^ Heizwert von Anthrazit in einem Bergwerk entzündet. Nehmen Sie an dass währ der Explosion das Luftvolumen konstant bleibt. % Die Explosionsgrenze ist laut Internet g/m^ bis g/m^.
Solution:
% . Okt. Lie. Kohle ist fast reiner Kohlenstoff. Bei der Verbrennung C + O_ rightarrow CO_ bleibt die Zahl der Gasteilchen in der Luft konstant. Wir können so tun als ob die freigesetzte Wärme die Luft erhitzt. * &Delta Q m_KH c_Lm_LDelta T &p propto T rightarrow fracp_p_ fracT_T_ rightarrow fracDelta pp_ fracDelta TT_ Rightarrow Delta p fracp_T_ Delta T fracp_T_ fracm_K Hc_Lm_L &Delta p frac.sibar.siK fracsig eeesiJ/kgsiJ/kgK sig uuline.sibar quad textDie Grössenordnung stimmt. * newpage
Contained in these collections: