Trägheitsmoment einer inhomogenen Kugel
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Bestimme das Trägheitsmoment einer Kugel bezüglich einer Drehachse ihren Mittelpunkt. Die Dichte der Kugel sei dabei gegeben durch rhortheta phi rho_ + mufracrR + nu fracthetapi.
Solution:
Die Masse der inhomogenen Kugel ist: m ddm && ddmrho ddV rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sinthetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sintheta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sintheta pi _^pi ddtheta pi sintheta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sintheta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sheta + fracmu R^sheta + nu fracthetapifracR^shetaright pi left -frac rho_R^ costheta - fracmu R^costheta + fracnu R^pi sheta-thetacosthetaright_^pi pi R^ leftfrac rho_ + fracmu + frac nu right Das Trägheitsmoment der inhomogenen Kugel ist: m tilde r^ ddm && ddmrho ddV x^+y^ rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten r^sin^theta rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sin^thetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sin^theta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sin^theta pi _^pi ddtheta pi sin^theta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sin^theta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sin^theta + fracmu R^sin^theta + nu fracthetapifracR^sin^thetaright pi leftfrac rho_R^ fraccostheta-fraccostheta + fracmu R^fraccostheta-fraccostheta + fracnupifracR^ dots right_^pi pi leftfrac rho_R^ frac + fracmu R^frac + fracnupifracR^ fracpiright pi R^ leftfrac rho_ + fracmu + nu fracright frac pi R^ leftfrac rho_ + fracmu + frac nu right R^
Bestimme das Trägheitsmoment einer Kugel bezüglich einer Drehachse ihren Mittelpunkt. Die Dichte der Kugel sei dabei gegeben durch rhortheta phi rho_ + mufracrR + nu fracthetapi.
Solution:
Die Masse der inhomogenen Kugel ist: m ddm && ddmrho ddV rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sinthetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sintheta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sintheta pi _^pi ddtheta pi sintheta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sintheta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sheta + fracmu R^sheta + nu fracthetapifracR^shetaright pi left -frac rho_R^ costheta - fracmu R^costheta + fracnu R^pi sheta-thetacosthetaright_^pi pi R^ leftfrac rho_ + fracmu + frac nu right Das Trägheitsmoment der inhomogenen Kugel ist: m tilde r^ ddm && ddmrho ddV x^+y^ rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten r^sin^theta rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sin^thetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sin^theta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sin^theta pi _^pi ddtheta pi sin^theta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sin^theta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sin^theta + fracmu R^sin^theta + nu fracthetapifracR^sin^thetaright pi leftfrac rho_R^ fraccostheta-fraccostheta + fracmu R^fraccostheta-fraccostheta + fracnupifracR^ dots right_^pi pi leftfrac rho_R^ frac + fracmu R^frac + fracnupifracR^ fracpiright pi R^ leftfrac rho_ + fracmu + nu fracright frac pi R^ leftfrac rho_ + fracmu + frac nu right R^
Meta Information
Exercise:
Bestimme das Trägheitsmoment einer Kugel bezüglich einer Drehachse ihren Mittelpunkt. Die Dichte der Kugel sei dabei gegeben durch rhortheta phi rho_ + mufracrR + nu fracthetapi.
Solution:
Die Masse der inhomogenen Kugel ist: m ddm && ddmrho ddV rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sinthetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sintheta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sintheta pi _^pi ddtheta pi sintheta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sintheta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sheta + fracmu R^sheta + nu fracthetapifracR^shetaright pi left -frac rho_R^ costheta - fracmu R^costheta + fracnu R^pi sheta-thetacosthetaright_^pi pi R^ leftfrac rho_ + fracmu + frac nu right Das Trägheitsmoment der inhomogenen Kugel ist: m tilde r^ ddm && ddmrho ddV x^+y^ rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten r^sin^theta rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sin^thetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sin^theta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sin^theta pi _^pi ddtheta pi sin^theta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sin^theta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sin^theta + fracmu R^sin^theta + nu fracthetapifracR^sin^thetaright pi leftfrac rho_R^ fraccostheta-fraccostheta + fracmu R^fraccostheta-fraccostheta + fracnupifracR^ dots right_^pi pi leftfrac rho_R^ frac + fracmu R^frac + fracnupifracR^ fracpiright pi R^ leftfrac rho_ + fracmu + nu fracright frac pi R^ leftfrac rho_ + fracmu + frac nu right R^
Bestimme das Trägheitsmoment einer Kugel bezüglich einer Drehachse ihren Mittelpunkt. Die Dichte der Kugel sei dabei gegeben durch rhortheta phi rho_ + mufracrR + nu fracthetapi.
Solution:
Die Masse der inhomogenen Kugel ist: m ddm && ddmrho ddV rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sinthetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sintheta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sintheta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sintheta pi _^pi ddtheta pi sintheta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sintheta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sheta + fracmu R^sheta + nu fracthetapifracR^shetaright pi left -frac rho_R^ costheta - fracmu R^costheta + fracnu R^pi sheta-thetacosthetaright_^pi pi R^ leftfrac rho_ + fracmu + frac nu right Das Trägheitsmoment der inhomogenen Kugel ist: m tilde r^ ddm && ddmrho ddV x^+y^ rho ddV && ddV r^ sinthetaddrddphiddtheta text Kugelkoordinaten r^sin^theta rho r^ sinthetaddrddphiddtheta rho_ + mufracrR + nu fracthetapi r^ sin^thetaddrddphiddtheta _^pi ddtheta _^R ddr _^piddphi rho_ + mufracrR + nu fracthetapi r^ sin^theta Alle Integrationen sauber durchgeführt ergibt: _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta leftright_^pi _^pi ddtheta _^R ddr leftrho_ + mufracrR + nu fracthetapiright r^ sin^theta pi _^pi ddtheta _^R ddr leftrho_r^ + mufracr^R + nu fracthetapir^right sin^theta pi _^pi ddtheta pi sin^theta leftfrac rho_r^ + fracmufracr^R + nu fracthetapifracr^right_^R _^pi ddtheta pi sin^theta leftfrac rho_R^ + fracmu R^ + nu fracthetapifracR^right _^pi ddtheta pi leftfrac rho_R^sin^theta + fracmu R^sin^theta + nu fracthetapifracR^sin^thetaright pi leftfrac rho_R^ fraccostheta-fraccostheta + fracmu R^fraccostheta-fraccostheta + fracnupifracR^ dots right_^pi pi leftfrac rho_R^ frac + fracmu R^frac + fracnupifracR^ fracpiright pi R^ leftfrac rho_ + fracmu + nu fracright frac pi R^ leftfrac rho_ + fracmu + frac nu right R^
Contained in these collections:
-
Trägheitsmomente Kugeln by TeXercises