Verdrehter Draht
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Am unteren Ende eines vertikal hängen Metalldrahtes sei ein horizontales Stäbchen mit jeweils einer kleinen Kugel an seinem rechten und linken Ende befestigt glqq Hantelobjektgrqq. Das Stäbchen werde dann in der horizontalen Ebene leicht gedreht wodurch auch der Draht verdreht wird Torsion. Zeige dass die Hantel am Draht anschliess eine harmonische Schwingung ausführen wird.
Solution:
center tikzpicture filldrawpatternnorth west lines - rectangle .; drawthick ---; drawvery thick -----; shadeball colorblack -- circle .; draw -- circle .; draw - circle .; shadeball colorblack - circle .; drawcolorred - -.- arc -::. and .; tikzpicture center Falls auf einen Metalldraht ein Drehmoment M wirkt wird er um einen bestimmten Winkel phi verdreht M D phi wobei D das Direktionsmoment bzw. die glqq Torsionskonstantegrqq ist. Das wirke Drehmoment ist also proportional zur Winkel-Auslenkung. Da das Drehmoment rückwirk ist kann zusammen mit MJalpha nun J ddot phi - D phi geschrieben werden woraus tcbhighmathhighlight mathK D folgt.
Am unteren Ende eines vertikal hängen Metalldrahtes sei ein horizontales Stäbchen mit jeweils einer kleinen Kugel an seinem rechten und linken Ende befestigt glqq Hantelobjektgrqq. Das Stäbchen werde dann in der horizontalen Ebene leicht gedreht wodurch auch der Draht verdreht wird Torsion. Zeige dass die Hantel am Draht anschliess eine harmonische Schwingung ausführen wird.
Solution:
center tikzpicture filldrawpatternnorth west lines - rectangle .; drawthick ---; drawvery thick -----; shadeball colorblack -- circle .; draw -- circle .; draw - circle .; shadeball colorblack - circle .; drawcolorred - -.- arc -::. and .; tikzpicture center Falls auf einen Metalldraht ein Drehmoment M wirkt wird er um einen bestimmten Winkel phi verdreht M D phi wobei D das Direktionsmoment bzw. die glqq Torsionskonstantegrqq ist. Das wirke Drehmoment ist also proportional zur Winkel-Auslenkung. Da das Drehmoment rückwirk ist kann zusammen mit MJalpha nun J ddot phi - D phi geschrieben werden woraus tcbhighmathhighlight mathK D folgt.
Meta Information
Exercise:
Am unteren Ende eines vertikal hängen Metalldrahtes sei ein horizontales Stäbchen mit jeweils einer kleinen Kugel an seinem rechten und linken Ende befestigt glqq Hantelobjektgrqq. Das Stäbchen werde dann in der horizontalen Ebene leicht gedreht wodurch auch der Draht verdreht wird Torsion. Zeige dass die Hantel am Draht anschliess eine harmonische Schwingung ausführen wird.
Solution:
center tikzpicture filldrawpatternnorth west lines - rectangle .; drawthick ---; drawvery thick -----; shadeball colorblack -- circle .; draw -- circle .; draw - circle .; shadeball colorblack - circle .; drawcolorred - -.- arc -::. and .; tikzpicture center Falls auf einen Metalldraht ein Drehmoment M wirkt wird er um einen bestimmten Winkel phi verdreht M D phi wobei D das Direktionsmoment bzw. die glqq Torsionskonstantegrqq ist. Das wirke Drehmoment ist also proportional zur Winkel-Auslenkung. Da das Drehmoment rückwirk ist kann zusammen mit MJalpha nun J ddot phi - D phi geschrieben werden woraus tcbhighmathhighlight mathK D folgt.
Am unteren Ende eines vertikal hängen Metalldrahtes sei ein horizontales Stäbchen mit jeweils einer kleinen Kugel an seinem rechten und linken Ende befestigt glqq Hantelobjektgrqq. Das Stäbchen werde dann in der horizontalen Ebene leicht gedreht wodurch auch der Draht verdreht wird Torsion. Zeige dass die Hantel am Draht anschliess eine harmonische Schwingung ausführen wird.
Solution:
center tikzpicture filldrawpatternnorth west lines - rectangle .; drawthick ---; drawvery thick -----; shadeball colorblack -- circle .; draw -- circle .; draw - circle .; shadeball colorblack - circle .; drawcolorred - -.- arc -::. and .; tikzpicture center Falls auf einen Metalldraht ein Drehmoment M wirkt wird er um einen bestimmten Winkel phi verdreht M D phi wobei D das Direktionsmoment bzw. die glqq Torsionskonstantegrqq ist. Das wirke Drehmoment ist also proportional zur Winkel-Auslenkung. Da das Drehmoment rückwirk ist kann zusammen mit MJalpha nun J ddot phi - D phi geschrieben werden woraus tcbhighmathhighlight mathK D folgt.
Contained in these collections:
-
Harmonische Schwingung 1 by uz