Vier Würfel drehen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Trägheitsmoment \(J, \Theta, I\) / Radius \(r\) /
The following formulas must be used to solve the exercise:
\(J = \sum_i r_i m_i \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Vier Massen an den Eckpunkten eines Quadrates seinen durch masselose Stäbe miteinander verbunden. Die Massen betragen m_ m_ kg und m_ m_ kg. Die Seitenlängen des quadrates sei l m. center tikzpicturescale. % Verbindung draw line widthpt drawgray +.+. rectangle +.+.; % Quader foreach x in foreach y in draw fillbluethick xy rectangle x+.y+.; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; tikzpicture center enumerate item Bestimmen Sie das Trägheitsmoment des Systems relativ zu einer Achse die senkrecht auf der Quadrat-Ebene steht und durch m_ geht. item Welche Arbeit ist nötig um eine Winkelgeschwindigkeit von rad/s um diese Achse zu erreichen? enumerate
Solution:
enumerate item Die Rotationsachse geht durch m_ und die anderen Massen haben von ihr die Abstände r_ sqrt apx .m und r_r_ m. Damit ergibt sich J m_r_^ + m_r_^+m_r_^+m_r_^ apx kgm^ wobei r_ ist. item Die aufzuwe Arbeit entspricht natürlich der Energieänderung. Da der Körper keine kinetische Energie zu Beginn hat gilt: W Delta E_rot E_rot fracJomega^ apx J. enumerate
Vier Massen an den Eckpunkten eines Quadrates seinen durch masselose Stäbe miteinander verbunden. Die Massen betragen m_ m_ kg und m_ m_ kg. Die Seitenlängen des quadrates sei l m. center tikzpicturescale. % Verbindung draw line widthpt drawgray +.+. rectangle +.+.; % Quader foreach x in foreach y in draw fillbluethick xy rectangle x+.y+.; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; tikzpicture center enumerate item Bestimmen Sie das Trägheitsmoment des Systems relativ zu einer Achse die senkrecht auf der Quadrat-Ebene steht und durch m_ geht. item Welche Arbeit ist nötig um eine Winkelgeschwindigkeit von rad/s um diese Achse zu erreichen? enumerate
Solution:
enumerate item Die Rotationsachse geht durch m_ und die anderen Massen haben von ihr die Abstände r_ sqrt apx .m und r_r_ m. Damit ergibt sich J m_r_^ + m_r_^+m_r_^+m_r_^ apx kgm^ wobei r_ ist. item Die aufzuwe Arbeit entspricht natürlich der Energieänderung. Da der Körper keine kinetische Energie zu Beginn hat gilt: W Delta E_rot E_rot fracJomega^ apx J. enumerate
Meta Information
Exercise:
Vier Massen an den Eckpunkten eines Quadrates seinen durch masselose Stäbe miteinander verbunden. Die Massen betragen m_ m_ kg und m_ m_ kg. Die Seitenlängen des quadrates sei l m. center tikzpicturescale. % Verbindung draw line widthpt drawgray +.+. rectangle +.+.; % Quader foreach x in foreach y in draw fillbluethick xy rectangle x+.y+.; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; tikzpicture center enumerate item Bestimmen Sie das Trägheitsmoment des Systems relativ zu einer Achse die senkrecht auf der Quadrat-Ebene steht und durch m_ geht. item Welche Arbeit ist nötig um eine Winkelgeschwindigkeit von rad/s um diese Achse zu erreichen? enumerate
Solution:
enumerate item Die Rotationsachse geht durch m_ und die anderen Massen haben von ihr die Abstände r_ sqrt apx .m und r_r_ m. Damit ergibt sich J m_r_^ + m_r_^+m_r_^+m_r_^ apx kgm^ wobei r_ ist. item Die aufzuwe Arbeit entspricht natürlich der Energieänderung. Da der Körper keine kinetische Energie zu Beginn hat gilt: W Delta E_rot E_rot fracJomega^ apx J. enumerate
Vier Massen an den Eckpunkten eines Quadrates seinen durch masselose Stäbe miteinander verbunden. Die Massen betragen m_ m_ kg und m_ m_ kg. Die Seitenlängen des quadrates sei l m. center tikzpicturescale. % Verbindung draw line widthpt drawgray +.+. rectangle +.+.; % Quader foreach x in foreach y in draw fillbluethick xy rectangle x+.y+.; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; node at +.+. fns textcolorwhiteboldsymbolm_; tikzpicture center enumerate item Bestimmen Sie das Trägheitsmoment des Systems relativ zu einer Achse die senkrecht auf der Quadrat-Ebene steht und durch m_ geht. item Welche Arbeit ist nötig um eine Winkelgeschwindigkeit von rad/s um diese Achse zu erreichen? enumerate
Solution:
enumerate item Die Rotationsachse geht durch m_ und die anderen Massen haben von ihr die Abstände r_ sqrt apx .m und r_r_ m. Damit ergibt sich J m_r_^ + m_r_^+m_r_^+m_r_^ apx kgm^ wobei r_ ist. item Die aufzuwe Arbeit entspricht natürlich der Energieänderung. Da der Körper keine kinetische Energie zu Beginn hat gilt: W Delta E_rot E_rot fracJomega^ apx J. enumerate
Contained in these collections:
-
Trägheitsmoment Punktkörpersystem by TeXercises