Wasser und Dampf mischen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Temperatur \(T\) / Wärme \(Q\) / spezifische latente Wärme \(L\) / Wärmekapazität \(c\) /
The following formulas must be used to solve the exercise:
\(Q = c \cdot m \cdot \Delta\vartheta \quad \) \(Q = m \cdot L_{\scriptscriptstyle\rm v} \quad \) \(\sum Q^\nearrow \stackrel{!}{=} \sum Q^\swarrow \quad \)
No explanation / solution video for this exercise has yet been created.
But there is a video to a similar exercise:
In case your browser prevents YouTube embedding: https://youtu.be/iW6NRIEawLQ
But there is a video to a similar exercise:
Exercise:
Es werden pqg Wasser von TCelsius und Wasserdampf von TCelsius zusammengemischt. Wie viele Gramm Wasserdampf sind notwig um am Schluss nur noch Wasser von TCelsius zu haben. Beachte dass der Dampf zu Wasser kondensieren muss! Die spezifische Wärmekapazität von Wasserdampf ist pq.eJpkgK.
Solution:
m das Wasser von TCelsius auf TCelsius aufzuwärmen braucht es eine Energie von Q_ cmDelta T pqJpkgK pq.kg pqK pq.J. Wasserdampf gibt beim Abkühlen von TCelsius auf TCelsius eine spezifische Wärme von q_D c_DDelta T_D pq.eJpkgK pqK pqJpkg ab. Beim kondensieren gibt der Dampf ausserdem eine spezifische Wärme von L_v pq.eJpkg ab. Zusammengefasst findet man für die Masse des Dampfes m fracQ_q_D+L_f pq.kg. Das sind rund Gramm.
Es werden pqg Wasser von TCelsius und Wasserdampf von TCelsius zusammengemischt. Wie viele Gramm Wasserdampf sind notwig um am Schluss nur noch Wasser von TCelsius zu haben. Beachte dass der Dampf zu Wasser kondensieren muss! Die spezifische Wärmekapazität von Wasserdampf ist pq.eJpkgK.
Solution:
m das Wasser von TCelsius auf TCelsius aufzuwärmen braucht es eine Energie von Q_ cmDelta T pqJpkgK pq.kg pqK pq.J. Wasserdampf gibt beim Abkühlen von TCelsius auf TCelsius eine spezifische Wärme von q_D c_DDelta T_D pq.eJpkgK pqK pqJpkg ab. Beim kondensieren gibt der Dampf ausserdem eine spezifische Wärme von L_v pq.eJpkg ab. Zusammengefasst findet man für die Masse des Dampfes m fracQ_q_D+L_f pq.kg. Das sind rund Gramm.
Meta Information
Exercise:
Es werden pqg Wasser von TCelsius und Wasserdampf von TCelsius zusammengemischt. Wie viele Gramm Wasserdampf sind notwig um am Schluss nur noch Wasser von TCelsius zu haben. Beachte dass der Dampf zu Wasser kondensieren muss! Die spezifische Wärmekapazität von Wasserdampf ist pq.eJpkgK.
Solution:
m das Wasser von TCelsius auf TCelsius aufzuwärmen braucht es eine Energie von Q_ cmDelta T pqJpkgK pq.kg pqK pq.J. Wasserdampf gibt beim Abkühlen von TCelsius auf TCelsius eine spezifische Wärme von q_D c_DDelta T_D pq.eJpkgK pqK pqJpkg ab. Beim kondensieren gibt der Dampf ausserdem eine spezifische Wärme von L_v pq.eJpkg ab. Zusammengefasst findet man für die Masse des Dampfes m fracQ_q_D+L_f pq.kg. Das sind rund Gramm.
Es werden pqg Wasser von TCelsius und Wasserdampf von TCelsius zusammengemischt. Wie viele Gramm Wasserdampf sind notwig um am Schluss nur noch Wasser von TCelsius zu haben. Beachte dass der Dampf zu Wasser kondensieren muss! Die spezifische Wärmekapazität von Wasserdampf ist pq.eJpkgK.
Solution:
m das Wasser von TCelsius auf TCelsius aufzuwärmen braucht es eine Energie von Q_ cmDelta T pqJpkgK pq.kg pqK pq.J. Wasserdampf gibt beim Abkühlen von TCelsius auf TCelsius eine spezifische Wärme von q_D c_DDelta T_D pq.eJpkgK pqK pqJpkg ab. Beim kondensieren gibt der Dampf ausserdem eine spezifische Wärme von L_v pq.eJpkg ab. Zusammengefasst findet man für die Masse des Dampfes m fracQ_q_D+L_f pq.kg. Das sind rund Gramm.
Contained in these collections:
-
Mischen mit Kondensationswärme by TeXercises
Asked Quantity:
Masse \(m\)
in
Kilogramm \(\rm kg\)
Physical Quantity
Eigenschaft der Materie
Unit
Base?
SI?
Metric?
Coherent?
Imperial?