Wirtshaus zur Krone
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Volumen \(V\) / Dichte \(\varrho\) /
The following formulas must be used to solve the exercise:
\(\varrho = \dfrac{m}{V} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine Krone hängt als Wirtshausschild an der skizzierten Stabverbindung; der obere Stab ziehe mit siN an der Wirtshausmauer der untere drücke mit siN gegen die Wirtshausmauer. Berechne die Gewichtskraft des Wirtshausschildes. vspacept center tikzpicturescale. filldrawdrawblack!!white fillblack!!white ---.---.------cycle; drawcolorblack thick ---.; drawcolorblack thick --; drawcolorblack thick --.; drawcolorblack thick ---.; filldrawdrawblack fillyellow thick -.---------.--.----.--.----.--.----.--.----.; fill circle .cm nodeabovexshift.cmP; tikzpicture center
Solution:
Geg.: F_siN F_siN Ges.: vecF_mathrmgpt Kräfte auf den Punkt P im Koordinatensystem: figureH centering tikzpicturelatex draw-colorgray --- noderightx; draw-colorgray --- nodeabovey; draw- thick colorGreen ---. nodebelowleftvecF_mathrmg; draw-thickcolorRed -- nodeaboveF_ -.; draw-thickcolorRed --nodebelowF_; draw-thickcolorReddashed --nodebelowF_x-; draw-thickcolorReddashed ---nodeleftF_y-.; tikzpicture figure Es gilt: fresxRa F_F_x fresyRa vecF_mathrmgF_y Im rechtwinkligen Dreieck mit der Hypothenuse F_ sind F_ und gemäss Gleichung als auch die Kathete F_xF_ bekannt. Damit erhalten wir die zweite Kathete F_y mit Pythagoras: F_ysqrtF_^-F_^ Mit Gleichung erhalten wir damit sofort: vecF_mathrmgsqrtF_^-F_^res.N
Eine Krone hängt als Wirtshausschild an der skizzierten Stabverbindung; der obere Stab ziehe mit siN an der Wirtshausmauer der untere drücke mit siN gegen die Wirtshausmauer. Berechne die Gewichtskraft des Wirtshausschildes. vspacept center tikzpicturescale. filldrawdrawblack!!white fillblack!!white ---.---.------cycle; drawcolorblack thick ---.; drawcolorblack thick --; drawcolorblack thick --.; drawcolorblack thick ---.; filldrawdrawblack fillyellow thick -.---------.--.----.--.----.--.----.--.----.; fill circle .cm nodeabovexshift.cmP; tikzpicture center
Solution:
Geg.: F_siN F_siN Ges.: vecF_mathrmgpt Kräfte auf den Punkt P im Koordinatensystem: figureH centering tikzpicturelatex draw-colorgray --- noderightx; draw-colorgray --- nodeabovey; draw- thick colorGreen ---. nodebelowleftvecF_mathrmg; draw-thickcolorRed -- nodeaboveF_ -.; draw-thickcolorRed --nodebelowF_; draw-thickcolorReddashed --nodebelowF_x-; draw-thickcolorReddashed ---nodeleftF_y-.; tikzpicture figure Es gilt: fresxRa F_F_x fresyRa vecF_mathrmgF_y Im rechtwinkligen Dreieck mit der Hypothenuse F_ sind F_ und gemäss Gleichung als auch die Kathete F_xF_ bekannt. Damit erhalten wir die zweite Kathete F_y mit Pythagoras: F_ysqrtF_^-F_^ Mit Gleichung erhalten wir damit sofort: vecF_mathrmgsqrtF_^-F_^res.N
Meta Information
Exercise:
Eine Krone hängt als Wirtshausschild an der skizzierten Stabverbindung; der obere Stab ziehe mit siN an der Wirtshausmauer der untere drücke mit siN gegen die Wirtshausmauer. Berechne die Gewichtskraft des Wirtshausschildes. vspacept center tikzpicturescale. filldrawdrawblack!!white fillblack!!white ---.---.------cycle; drawcolorblack thick ---.; drawcolorblack thick --; drawcolorblack thick --.; drawcolorblack thick ---.; filldrawdrawblack fillyellow thick -.---------.--.----.--.----.--.----.--.----.; fill circle .cm nodeabovexshift.cmP; tikzpicture center
Solution:
Geg.: F_siN F_siN Ges.: vecF_mathrmgpt Kräfte auf den Punkt P im Koordinatensystem: figureH centering tikzpicturelatex draw-colorgray --- noderightx; draw-colorgray --- nodeabovey; draw- thick colorGreen ---. nodebelowleftvecF_mathrmg; draw-thickcolorRed -- nodeaboveF_ -.; draw-thickcolorRed --nodebelowF_; draw-thickcolorReddashed --nodebelowF_x-; draw-thickcolorReddashed ---nodeleftF_y-.; tikzpicture figure Es gilt: fresxRa F_F_x fresyRa vecF_mathrmgF_y Im rechtwinkligen Dreieck mit der Hypothenuse F_ sind F_ und gemäss Gleichung als auch die Kathete F_xF_ bekannt. Damit erhalten wir die zweite Kathete F_y mit Pythagoras: F_ysqrtF_^-F_^ Mit Gleichung erhalten wir damit sofort: vecF_mathrmgsqrtF_^-F_^res.N
Eine Krone hängt als Wirtshausschild an der skizzierten Stabverbindung; der obere Stab ziehe mit siN an der Wirtshausmauer der untere drücke mit siN gegen die Wirtshausmauer. Berechne die Gewichtskraft des Wirtshausschildes. vspacept center tikzpicturescale. filldrawdrawblack!!white fillblack!!white ---.---.------cycle; drawcolorblack thick ---.; drawcolorblack thick --; drawcolorblack thick --.; drawcolorblack thick ---.; filldrawdrawblack fillyellow thick -.---------.--.----.--.----.--.----.--.----.; fill circle .cm nodeabovexshift.cmP; tikzpicture center
Solution:
Geg.: F_siN F_siN Ges.: vecF_mathrmgpt Kräfte auf den Punkt P im Koordinatensystem: figureH centering tikzpicturelatex draw-colorgray --- noderightx; draw-colorgray --- nodeabovey; draw- thick colorGreen ---. nodebelowleftvecF_mathrmg; draw-thickcolorRed -- nodeaboveF_ -.; draw-thickcolorRed --nodebelowF_; draw-thickcolorReddashed --nodebelowF_x-; draw-thickcolorReddashed ---nodeleftF_y-.; tikzpicture figure Es gilt: fresxRa F_F_x fresyRa vecF_mathrmgF_y Im rechtwinkligen Dreieck mit der Hypothenuse F_ sind F_ und gemäss Gleichung als auch die Kathete F_xF_ bekannt. Damit erhalten wir die zweite Kathete F_y mit Pythagoras: F_ysqrtF_^-F_^ Mit Gleichung erhalten wir damit sofort: vecF_mathrmgsqrtF_^-F_^res.N
Contained in these collections:
-
Gasthaus zur Krone by TeXercises