Zwei Leiter u. eine Spule
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Durch eine Spule mit Windungen und einer Länge von m fliesst von links nach rechts ein Strom der Stärke A vernachlässigen Sie die Breite der Spule. Innerhalb der Spule verlaufen zwei gerade sehr lange Leiter. Im oberen Leiter fliesst der Strom von A und im unteren einen von A. Die Ströme sind gegenläufig vgl. Abb.. Bestimmen Sie das resultiere magnetische Feld am Punkt welcher sich in der Mitte der geraden Leiter befindet. center tikzpicturescale. draw decoratedecorationcoilsegment length. cmamplitudecm aspect.drawblack thick -- ; draw very thick-latex . -- .; draw very thicklatex- -. -- -.; draw fillblack . circle .mm; draw latex-latex -. -- node right mm.; tikzpicture center
Solution:
Da die beiden geraden Leiter gegenläufig sind zeigen die B-Felder in der Mitte in die gleiche Richtung d.h. B_o fracmu_I_opi d/ approx .milliT und unten B_u fracmu_I_upi d/ approx .milliT. Somit ergibt sich für das B-Feld der Leiter: B_Lei B_o + B_u .milliT. Für das Feld der Spule gilt: B_Spu approx fracmu_NIl approx .milliT. Das resultiere B-Feld ist somit da die Felder rechtwinklig aufeinander stehen B_res sqrtB_Lei^ + B_Spu^ approx .milliT.
Durch eine Spule mit Windungen und einer Länge von m fliesst von links nach rechts ein Strom der Stärke A vernachlässigen Sie die Breite der Spule. Innerhalb der Spule verlaufen zwei gerade sehr lange Leiter. Im oberen Leiter fliesst der Strom von A und im unteren einen von A. Die Ströme sind gegenläufig vgl. Abb.. Bestimmen Sie das resultiere magnetische Feld am Punkt welcher sich in der Mitte der geraden Leiter befindet. center tikzpicturescale. draw decoratedecorationcoilsegment length. cmamplitudecm aspect.drawblack thick -- ; draw very thick-latex . -- .; draw very thicklatex- -. -- -.; draw fillblack . circle .mm; draw latex-latex -. -- node right mm.; tikzpicture center
Solution:
Da die beiden geraden Leiter gegenläufig sind zeigen die B-Felder in der Mitte in die gleiche Richtung d.h. B_o fracmu_I_opi d/ approx .milliT und unten B_u fracmu_I_upi d/ approx .milliT. Somit ergibt sich für das B-Feld der Leiter: B_Lei B_o + B_u .milliT. Für das Feld der Spule gilt: B_Spu approx fracmu_NIl approx .milliT. Das resultiere B-Feld ist somit da die Felder rechtwinklig aufeinander stehen B_res sqrtB_Lei^ + B_Spu^ approx .milliT.
Meta Information
Exercise:
Durch eine Spule mit Windungen und einer Länge von m fliesst von links nach rechts ein Strom der Stärke A vernachlässigen Sie die Breite der Spule. Innerhalb der Spule verlaufen zwei gerade sehr lange Leiter. Im oberen Leiter fliesst der Strom von A und im unteren einen von A. Die Ströme sind gegenläufig vgl. Abb.. Bestimmen Sie das resultiere magnetische Feld am Punkt welcher sich in der Mitte der geraden Leiter befindet. center tikzpicturescale. draw decoratedecorationcoilsegment length. cmamplitudecm aspect.drawblack thick -- ; draw very thick-latex . -- .; draw very thicklatex- -. -- -.; draw fillblack . circle .mm; draw latex-latex -. -- node right mm.; tikzpicture center
Solution:
Da die beiden geraden Leiter gegenläufig sind zeigen die B-Felder in der Mitte in die gleiche Richtung d.h. B_o fracmu_I_opi d/ approx .milliT und unten B_u fracmu_I_upi d/ approx .milliT. Somit ergibt sich für das B-Feld der Leiter: B_Lei B_o + B_u .milliT. Für das Feld der Spule gilt: B_Spu approx fracmu_NIl approx .milliT. Das resultiere B-Feld ist somit da die Felder rechtwinklig aufeinander stehen B_res sqrtB_Lei^ + B_Spu^ approx .milliT.
Durch eine Spule mit Windungen und einer Länge von m fliesst von links nach rechts ein Strom der Stärke A vernachlässigen Sie die Breite der Spule. Innerhalb der Spule verlaufen zwei gerade sehr lange Leiter. Im oberen Leiter fliesst der Strom von A und im unteren einen von A. Die Ströme sind gegenläufig vgl. Abb.. Bestimmen Sie das resultiere magnetische Feld am Punkt welcher sich in der Mitte der geraden Leiter befindet. center tikzpicturescale. draw decoratedecorationcoilsegment length. cmamplitudecm aspect.drawblack thick -- ; draw very thick-latex . -- .; draw very thicklatex- -. -- -.; draw fillblack . circle .mm; draw latex-latex -. -- node right mm.; tikzpicture center
Solution:
Da die beiden geraden Leiter gegenläufig sind zeigen die B-Felder in der Mitte in die gleiche Richtung d.h. B_o fracmu_I_opi d/ approx .milliT und unten B_u fracmu_I_upi d/ approx .milliT. Somit ergibt sich für das B-Feld der Leiter: B_Lei B_o + B_u .milliT. Für das Feld der Spule gilt: B_Spu approx fracmu_NIl approx .milliT. Das resultiere B-Feld ist somit da die Felder rechtwinklig aufeinander stehen B_res sqrtB_Lei^ + B_Spu^ approx .milliT.
Contained in these collections:

