Alter des Turiner Grabtuches
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Zeit \(t\) / Masse \(m\) / Aktivität \(A\) / Halbwertszeit \(T\) / Zerfallskonstante \(\lambda\) /
The following formulas must be used to solve the exercise:
\(A = m \hat A \quad \) \(A_t = A_0 \cdot \text{e}^{-\lambda t} \quad \) \(A_t = A_0 \cdot2^{-\frac{t}{T}} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Unter Aufsicht des Turiner Erzbischofs wurden im Jahr dem Turnier Grabtuch mCO Kohlenstoff entnommen welcher anschliess im Labor eine Aktivität von AtO aufwies. Berechne aus diesen Angaben das Alter des Turiner Grabtuches. Die Anfangsaktivität aufgrund des isotopeC ist hAzO seine Halbwertszeit ist TO.
Solution:
Geg m mCO mC A_t AtO At hat A_ hAzO hAz T TO T GesAlter bzw. Zeittsis Die Anfangsaktivität von mCO Kohlenstoff beträgt: A_ m widehat A_ mC hAz Az Das Alter des Grabtuches beträgt somit: t -fracTln lnfracA_tA_ fracTln lnfracA_tm widehat A_ -fracTln lnfracAtAz t ta t fracTln lnfracm widehat A_A_t T log_leftfracm widehat A_A_tright t ta Ausrufbox Das Tuch wurde also um das Jahr - herum produziert. Seine erste Erwähnung in den Schriften findet sich im Jahr ; das Resultat sche also sehr plausibel. Ausrufbox
Unter Aufsicht des Turiner Erzbischofs wurden im Jahr dem Turnier Grabtuch mCO Kohlenstoff entnommen welcher anschliess im Labor eine Aktivität von AtO aufwies. Berechne aus diesen Angaben das Alter des Turiner Grabtuches. Die Anfangsaktivität aufgrund des isotopeC ist hAzO seine Halbwertszeit ist TO.
Solution:
Geg m mCO mC A_t AtO At hat A_ hAzO hAz T TO T GesAlter bzw. Zeittsis Die Anfangsaktivität von mCO Kohlenstoff beträgt: A_ m widehat A_ mC hAz Az Das Alter des Grabtuches beträgt somit: t -fracTln lnfracA_tA_ fracTln lnfracA_tm widehat A_ -fracTln lnfracAtAz t ta t fracTln lnfracm widehat A_A_t T log_leftfracm widehat A_A_tright t ta Ausrufbox Das Tuch wurde also um das Jahr - herum produziert. Seine erste Erwähnung in den Schriften findet sich im Jahr ; das Resultat sche also sehr plausibel. Ausrufbox
Meta Information
Exercise:
Unter Aufsicht des Turiner Erzbischofs wurden im Jahr dem Turnier Grabtuch mCO Kohlenstoff entnommen welcher anschliess im Labor eine Aktivität von AtO aufwies. Berechne aus diesen Angaben das Alter des Turiner Grabtuches. Die Anfangsaktivität aufgrund des isotopeC ist hAzO seine Halbwertszeit ist TO.
Solution:
Geg m mCO mC A_t AtO At hat A_ hAzO hAz T TO T GesAlter bzw. Zeittsis Die Anfangsaktivität von mCO Kohlenstoff beträgt: A_ m widehat A_ mC hAz Az Das Alter des Grabtuches beträgt somit: t -fracTln lnfracA_tA_ fracTln lnfracA_tm widehat A_ -fracTln lnfracAtAz t ta t fracTln lnfracm widehat A_A_t T log_leftfracm widehat A_A_tright t ta Ausrufbox Das Tuch wurde also um das Jahr - herum produziert. Seine erste Erwähnung in den Schriften findet sich im Jahr ; das Resultat sche also sehr plausibel. Ausrufbox
Unter Aufsicht des Turiner Erzbischofs wurden im Jahr dem Turnier Grabtuch mCO Kohlenstoff entnommen welcher anschliess im Labor eine Aktivität von AtO aufwies. Berechne aus diesen Angaben das Alter des Turiner Grabtuches. Die Anfangsaktivität aufgrund des isotopeC ist hAzO seine Halbwertszeit ist TO.
Solution:
Geg m mCO mC A_t AtO At hat A_ hAzO hAz T TO T GesAlter bzw. Zeittsis Die Anfangsaktivität von mCO Kohlenstoff beträgt: A_ m widehat A_ mC hAz Az Das Alter des Grabtuches beträgt somit: t -fracTln lnfracA_tA_ fracTln lnfracA_tm widehat A_ -fracTln lnfracAtAz t ta t fracTln lnfracm widehat A_A_t T log_leftfracm widehat A_A_tright t ta Ausrufbox Das Tuch wurde also um das Jahr - herum produziert. Seine erste Erwähnung in den Schriften findet sich im Jahr ; das Resultat sche also sehr plausibel. Ausrufbox
Contained in these collections:
-
C14-Methode by TeXercises
Asked Quantity:
Zeit \(t\)
in
Sekunde \(\rm s\)
Physical Quantity
Die Zeit beschreibt die Abfolge von Ereignissen, hat also eine eindeutige, nicht umkehrbare Richtung.
Unit
Seit 1967 ist eine Sekunde das 9.192.631.770-fache der Periodendauer der Strahlung, die dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids 133Cs entspricht.
Base?
SI?
Metric?
Coherent?
Imperial?