Billardkugel
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine Billardkugel mO mit dO Durchmesser wird mit einem Stoss durch das Queue horizontal auf den Mittelpunkt so in Bewegung versetzt dass sie anfänglich mit vO über den Tisch gleitet. Berechne den Gleitreibungskoeffizienten zwischen Tisch und Kugel falls sie nach sO anfängt schlupffrei zu rollen.
Solution:
Die Geschwindigkeit der Billardkugel in Abhängigkeit von der Reibugskraft ist v at + v_ fracFm t + v_. Die Rotationsgeschwindigkeit der Kugel in Abhängigkeit von der Reibungskraft ist omega alpha t + omega_ fracMJ t + omega_ fracrFfracmr^ t fracrFmr^ t Rollen ohne gleiten heisst: v romega fracFm t + v_ r fracrFmr^ t fracmF v_ left frac - right t frac t t frac fracmF v_ Für die Strecke gilt: s v_ t - fracat^ v_ t - fracFmt^ v_ frac fracmF v_ - fracFm frac fracm^F^ v_^ frac fracmF v_^ - frac fracmF v_^ leftfrac - fracright fracmF v_^ frac fracmF v_^ Womit für die Reibungskraft SolQtyF/*mX/sX*vX^N F frac fracms v_^ frac fracms qtyv^ F und für den Reibungskoeffizienten SolQtyFgmX*ncgnN SolQtymuRFX/FgX mu fracFF_bot fracFsscFG fracFFg muR gilt.
Eine Billardkugel mO mit dO Durchmesser wird mit einem Stoss durch das Queue horizontal auf den Mittelpunkt so in Bewegung versetzt dass sie anfänglich mit vO über den Tisch gleitet. Berechne den Gleitreibungskoeffizienten zwischen Tisch und Kugel falls sie nach sO anfängt schlupffrei zu rollen.
Solution:
Die Geschwindigkeit der Billardkugel in Abhängigkeit von der Reibugskraft ist v at + v_ fracFm t + v_. Die Rotationsgeschwindigkeit der Kugel in Abhängigkeit von der Reibungskraft ist omega alpha t + omega_ fracMJ t + omega_ fracrFfracmr^ t fracrFmr^ t Rollen ohne gleiten heisst: v romega fracFm t + v_ r fracrFmr^ t fracmF v_ left frac - right t frac t t frac fracmF v_ Für die Strecke gilt: s v_ t - fracat^ v_ t - fracFmt^ v_ frac fracmF v_ - fracFm frac fracm^F^ v_^ frac fracmF v_^ - frac fracmF v_^ leftfrac - fracright fracmF v_^ frac fracmF v_^ Womit für die Reibungskraft SolQtyF/*mX/sX*vX^N F frac fracms v_^ frac fracms qtyv^ F und für den Reibungskoeffizienten SolQtyFgmX*ncgnN SolQtymuRFX/FgX mu fracFF_bot fracFsscFG fracFFg muR gilt.
Meta Information
Exercise:
Eine Billardkugel mO mit dO Durchmesser wird mit einem Stoss durch das Queue horizontal auf den Mittelpunkt so in Bewegung versetzt dass sie anfänglich mit vO über den Tisch gleitet. Berechne den Gleitreibungskoeffizienten zwischen Tisch und Kugel falls sie nach sO anfängt schlupffrei zu rollen.
Solution:
Die Geschwindigkeit der Billardkugel in Abhängigkeit von der Reibugskraft ist v at + v_ fracFm t + v_. Die Rotationsgeschwindigkeit der Kugel in Abhängigkeit von der Reibungskraft ist omega alpha t + omega_ fracMJ t + omega_ fracrFfracmr^ t fracrFmr^ t Rollen ohne gleiten heisst: v romega fracFm t + v_ r fracrFmr^ t fracmF v_ left frac - right t frac t t frac fracmF v_ Für die Strecke gilt: s v_ t - fracat^ v_ t - fracFmt^ v_ frac fracmF v_ - fracFm frac fracm^F^ v_^ frac fracmF v_^ - frac fracmF v_^ leftfrac - fracright fracmF v_^ frac fracmF v_^ Womit für die Reibungskraft SolQtyF/*mX/sX*vX^N F frac fracms v_^ frac fracms qtyv^ F und für den Reibungskoeffizienten SolQtyFgmX*ncgnN SolQtymuRFX/FgX mu fracFF_bot fracFsscFG fracFFg muR gilt.
Eine Billardkugel mO mit dO Durchmesser wird mit einem Stoss durch das Queue horizontal auf den Mittelpunkt so in Bewegung versetzt dass sie anfänglich mit vO über den Tisch gleitet. Berechne den Gleitreibungskoeffizienten zwischen Tisch und Kugel falls sie nach sO anfängt schlupffrei zu rollen.
Solution:
Die Geschwindigkeit der Billardkugel in Abhängigkeit von der Reibugskraft ist v at + v_ fracFm t + v_. Die Rotationsgeschwindigkeit der Kugel in Abhängigkeit von der Reibungskraft ist omega alpha t + omega_ fracMJ t + omega_ fracrFfracmr^ t fracrFmr^ t Rollen ohne gleiten heisst: v romega fracFm t + v_ r fracrFmr^ t fracmF v_ left frac - right t frac t t frac fracmF v_ Für die Strecke gilt: s v_ t - fracat^ v_ t - fracFmt^ v_ frac fracmF v_ - fracFm frac fracm^F^ v_^ frac fracmF v_^ - frac fracmF v_^ leftfrac - fracright fracmF v_^ frac fracmF v_^ Womit für die Reibungskraft SolQtyF/*mX/sX*vX^N F frac fracms v_^ frac fracms qtyv^ F und für den Reibungskoeffizienten SolQtyFgmX*ncgnN SolQtymuRFX/FgX mu fracFF_bot fracFsscFG fracFFg muR gilt.
Contained in these collections:
-
Billardkugel by TeXercises
-
Physical Quantity
Reibungskoeffizient \(\mu_{\rm Gl,H}\)
Reibungszahl
Verhältnis von Reibungskraft zu Normalkraft
Unit
Reibungskoeffizient (\(\rm 1\))
Base?
SI?
Metric?
Coherent?
Imperial?
\(\rm0.65\,\): Gleitreibung Pneu auf Asphalt
\(\rm0.85\,\): Haftreibung Pneu auf Asphalt