Damped Oscillation (general solution)
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
The general solution for a damped oscillator with linear damping i.e. a damping term proportional to v_yt can be written as yt left C_ cosomega t + C_ sinomega t right e^-delta t Find the coefficients C_ and C_ for abcliste abc an oscillation starting from rest with an initial amplitude A; abc an oscillation starting from the equlibrium position with an initial velocity v_. abcliste
Solution:
The displacement for t is y left C_ cos + C_ sin right e^ left C_ + C_ right C_ The first derivative of yt is dot yt left -C_ sinomega t omega + C_ cosomega t omega right e^-delta t & quad - leftC_ cosomega t + C_ sinomega t right e^-delta t delta left - sinomega t C_ omega + C_ delta+ cosomega t C_ omega - C_ delta right e^-delta t For t only the cosine term remains: dot y C_ omega - C_ delta abcliste abc The initial conditions are yA and dot y. It follows that C_ A C_ omega - C_ delta v_ Longrightarrow C_ v_ + C_ delta v_ + A delta The solution can be written as yt left A cosomega t + v_ + Adelta sinomega t right e^-delta t abc The initial conditions are C_ C_ omega - C_ delta C_ omega v_ Longrightarrow C_ fracv_omega The solution can be written as yt fracv_omega sinomega t e^-delta t abcliste
The general solution for a damped oscillator with linear damping i.e. a damping term proportional to v_yt can be written as yt left C_ cosomega t + C_ sinomega t right e^-delta t Find the coefficients C_ and C_ for abcliste abc an oscillation starting from rest with an initial amplitude A; abc an oscillation starting from the equlibrium position with an initial velocity v_. abcliste
Solution:
The displacement for t is y left C_ cos + C_ sin right e^ left C_ + C_ right C_ The first derivative of yt is dot yt left -C_ sinomega t omega + C_ cosomega t omega right e^-delta t & quad - leftC_ cosomega t + C_ sinomega t right e^-delta t delta left - sinomega t C_ omega + C_ delta+ cosomega t C_ omega - C_ delta right e^-delta t For t only the cosine term remains: dot y C_ omega - C_ delta abcliste abc The initial conditions are yA and dot y. It follows that C_ A C_ omega - C_ delta v_ Longrightarrow C_ v_ + C_ delta v_ + A delta The solution can be written as yt left A cosomega t + v_ + Adelta sinomega t right e^-delta t abc The initial conditions are C_ C_ omega - C_ delta C_ omega v_ Longrightarrow C_ fracv_omega The solution can be written as yt fracv_omega sinomega t e^-delta t abcliste
Meta Information
Exercise:
The general solution for a damped oscillator with linear damping i.e. a damping term proportional to v_yt can be written as yt left C_ cosomega t + C_ sinomega t right e^-delta t Find the coefficients C_ and C_ for abcliste abc an oscillation starting from rest with an initial amplitude A; abc an oscillation starting from the equlibrium position with an initial velocity v_. abcliste
Solution:
The displacement for t is y left C_ cos + C_ sin right e^ left C_ + C_ right C_ The first derivative of yt is dot yt left -C_ sinomega t omega + C_ cosomega t omega right e^-delta t & quad - leftC_ cosomega t + C_ sinomega t right e^-delta t delta left - sinomega t C_ omega + C_ delta+ cosomega t C_ omega - C_ delta right e^-delta t For t only the cosine term remains: dot y C_ omega - C_ delta abcliste abc The initial conditions are yA and dot y. It follows that C_ A C_ omega - C_ delta v_ Longrightarrow C_ v_ + C_ delta v_ + A delta The solution can be written as yt left A cosomega t + v_ + Adelta sinomega t right e^-delta t abc The initial conditions are C_ C_ omega - C_ delta C_ omega v_ Longrightarrow C_ fracv_omega The solution can be written as yt fracv_omega sinomega t e^-delta t abcliste
The general solution for a damped oscillator with linear damping i.e. a damping term proportional to v_yt can be written as yt left C_ cosomega t + C_ sinomega t right e^-delta t Find the coefficients C_ and C_ for abcliste abc an oscillation starting from rest with an initial amplitude A; abc an oscillation starting from the equlibrium position with an initial velocity v_. abcliste
Solution:
The displacement for t is y left C_ cos + C_ sin right e^ left C_ + C_ right C_ The first derivative of yt is dot yt left -C_ sinomega t omega + C_ cosomega t omega right e^-delta t & quad - leftC_ cosomega t + C_ sinomega t right e^-delta t delta left - sinomega t C_ omega + C_ delta+ cosomega t C_ omega - C_ delta right e^-delta t For t only the cosine term remains: dot y C_ omega - C_ delta abcliste abc The initial conditions are yA and dot y. It follows that C_ A C_ omega - C_ delta v_ Longrightarrow C_ v_ + C_ delta v_ + A delta The solution can be written as yt left A cosomega t + v_ + Adelta sinomega t right e^-delta t abc The initial conditions are C_ C_ omega - C_ delta C_ omega v_ Longrightarrow C_ fracv_omega The solution can be written as yt fracv_omega sinomega t e^-delta t abcliste
Contained in these collections:

