Elementsynthese in Sternen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die Elemente sind in den Sternen durch Fusion entstanden; so kann z.B. Magnesium aus Neon und Helium nach folger Reaktionsgleichung entstehen: isotopeNe + isotopeHe rightarrow isotopeMg + isotopen Ein bestimmter Stern verbrenne so etonne Helium an einem Tag. abcliste abc DuSieBerechneBerechnen Sie wie viel Masse Magnesium in einer Sekunde entsteht. abc DuSieBerechneBerechnen Sie um welchen Betrag sich die Masse des Sternes pro Jahr verändert. abcliste
Solution:
abcliste abc Aus der Million Tonnen Helium kann man die Reaktionsgleichung n fractilde mtilde M .emol N numpr.e mal ablaufen lassen. Das entspricht einer Masse von m n M .ekg Magnesium. abc Der Massefekt für die angegebene Reaktionsgleichung beträgt: Delta m m_l -m_r -.u Für einen Tag respektive ein Jahr macht das eine Massifferenz von Delta m_d -.eu Delta m_a -.eu -.ekg Der Stern nimmt also jährlich an Masse zu und kühlt sich dabei ab. abcliste
Die Elemente sind in den Sternen durch Fusion entstanden; so kann z.B. Magnesium aus Neon und Helium nach folger Reaktionsgleichung entstehen: isotopeNe + isotopeHe rightarrow isotopeMg + isotopen Ein bestimmter Stern verbrenne so etonne Helium an einem Tag. abcliste abc DuSieBerechneBerechnen Sie wie viel Masse Magnesium in einer Sekunde entsteht. abc DuSieBerechneBerechnen Sie um welchen Betrag sich die Masse des Sternes pro Jahr verändert. abcliste
Solution:
abcliste abc Aus der Million Tonnen Helium kann man die Reaktionsgleichung n fractilde mtilde M .emol N numpr.e mal ablaufen lassen. Das entspricht einer Masse von m n M .ekg Magnesium. abc Der Massefekt für die angegebene Reaktionsgleichung beträgt: Delta m m_l -m_r -.u Für einen Tag respektive ein Jahr macht das eine Massifferenz von Delta m_d -.eu Delta m_a -.eu -.ekg Der Stern nimmt also jährlich an Masse zu und kühlt sich dabei ab. abcliste
Meta Information
Exercise:
Die Elemente sind in den Sternen durch Fusion entstanden; so kann z.B. Magnesium aus Neon und Helium nach folger Reaktionsgleichung entstehen: isotopeNe + isotopeHe rightarrow isotopeMg + isotopen Ein bestimmter Stern verbrenne so etonne Helium an einem Tag. abcliste abc DuSieBerechneBerechnen Sie wie viel Masse Magnesium in einer Sekunde entsteht. abc DuSieBerechneBerechnen Sie um welchen Betrag sich die Masse des Sternes pro Jahr verändert. abcliste
Solution:
abcliste abc Aus der Million Tonnen Helium kann man die Reaktionsgleichung n fractilde mtilde M .emol N numpr.e mal ablaufen lassen. Das entspricht einer Masse von m n M .ekg Magnesium. abc Der Massefekt für die angegebene Reaktionsgleichung beträgt: Delta m m_l -m_r -.u Für einen Tag respektive ein Jahr macht das eine Massifferenz von Delta m_d -.eu Delta m_a -.eu -.ekg Der Stern nimmt also jährlich an Masse zu und kühlt sich dabei ab. abcliste
Die Elemente sind in den Sternen durch Fusion entstanden; so kann z.B. Magnesium aus Neon und Helium nach folger Reaktionsgleichung entstehen: isotopeNe + isotopeHe rightarrow isotopeMg + isotopen Ein bestimmter Stern verbrenne so etonne Helium an einem Tag. abcliste abc DuSieBerechneBerechnen Sie wie viel Masse Magnesium in einer Sekunde entsteht. abc DuSieBerechneBerechnen Sie um welchen Betrag sich die Masse des Sternes pro Jahr verändert. abcliste
Solution:
abcliste abc Aus der Million Tonnen Helium kann man die Reaktionsgleichung n fractilde mtilde M .emol N numpr.e mal ablaufen lassen. Das entspricht einer Masse von m n M .ekg Magnesium. abc Der Massefekt für die angegebene Reaktionsgleichung beträgt: Delta m m_l -m_r -.u Für einen Tag respektive ein Jahr macht das eine Massifferenz von Delta m_d -.eu Delta m_a -.eu -.ekg Der Stern nimmt also jährlich an Masse zu und kühlt sich dabei ab. abcliste
Contained in these collections:
-
Kernfusion by uz
-
Elementsynthese in Sternen by TeXercises
Asked Quantity:
Masse \(m\)
in
Kilogramm \(\rm kg\)
Physical Quantity
Eigenschaft der Materie
Unit
Base?
SI?
Metric?
Coherent?
Imperial?