Ersatzwiderstand
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Folg gibt jede Teilaufgabe einen Punkt. Der Rechnungsweg wird auch bewertet. Richtige Resultate ohne ersichtliche Berechnung geben keine Punkte. Der Ersatzwiderstand der Schaltung unten sei pqOmega. Die anliege Spannung ist U_pqV. TwoColumnExercise.. abcliste abc Wie gross ist der Widerstand R_? abc Wie gross ist der Totalstrom Itot? abc Wie gross ist die Spannung die über dem Widerstand R_ abfällt? abc Wie gross ist der Teilstrom durch den Widerstand R_? abcliste centernoindent tikzpicture nodeleft at -. U_; drawthick -..--..; drawthick -.-.--.-.; drawthick .--.--..--.--; drawthick ..--.--; drawthick -.---.---.--.-.--..--.; drawthick .--..--.--; drawthick --.--..; drawthick -. rectangle .; drawthick . rectangle .; drawthick . rectangle .; node at R_pqOmega; node at R_pqOmega; node at . R_; tikzpicture center
Solution:
abcliste abc Der Ersatzwiderstand von R_ und R_ ist pqOmega Parallelschaltung. Daher muss R_pqOmega sein. abc Der Totalstrom ist Itot fracU_R fracpqVpqOmega pq.A. abc Da über dem Widerstand R_ die Spannung U_R_ Itot pq.V abfällt fallen über R_ nur pq.V ab. abc Da durch den Widerstand R_ ein Strom von I_fracU_R_ pq.A fliesst fliessen durch R_ wegen der Knotenregel pq.A-pq.A pq.A. abcliste
Folg gibt jede Teilaufgabe einen Punkt. Der Rechnungsweg wird auch bewertet. Richtige Resultate ohne ersichtliche Berechnung geben keine Punkte. Der Ersatzwiderstand der Schaltung unten sei pqOmega. Die anliege Spannung ist U_pqV. TwoColumnExercise.. abcliste abc Wie gross ist der Widerstand R_? abc Wie gross ist der Totalstrom Itot? abc Wie gross ist die Spannung die über dem Widerstand R_ abfällt? abc Wie gross ist der Teilstrom durch den Widerstand R_? abcliste centernoindent tikzpicture nodeleft at -. U_; drawthick -..--..; drawthick -.-.--.-.; drawthick .--.--..--.--; drawthick ..--.--; drawthick -.---.---.--.-.--..--.; drawthick .--..--.--; drawthick --.--..; drawthick -. rectangle .; drawthick . rectangle .; drawthick . rectangle .; node at R_pqOmega; node at R_pqOmega; node at . R_; tikzpicture center
Solution:
abcliste abc Der Ersatzwiderstand von R_ und R_ ist pqOmega Parallelschaltung. Daher muss R_pqOmega sein. abc Der Totalstrom ist Itot fracU_R fracpqVpqOmega pq.A. abc Da über dem Widerstand R_ die Spannung U_R_ Itot pq.V abfällt fallen über R_ nur pq.V ab. abc Da durch den Widerstand R_ ein Strom von I_fracU_R_ pq.A fliesst fliessen durch R_ wegen der Knotenregel pq.A-pq.A pq.A. abcliste
Meta Information
Exercise:
Folg gibt jede Teilaufgabe einen Punkt. Der Rechnungsweg wird auch bewertet. Richtige Resultate ohne ersichtliche Berechnung geben keine Punkte. Der Ersatzwiderstand der Schaltung unten sei pqOmega. Die anliege Spannung ist U_pqV. TwoColumnExercise.. abcliste abc Wie gross ist der Widerstand R_? abc Wie gross ist der Totalstrom Itot? abc Wie gross ist die Spannung die über dem Widerstand R_ abfällt? abc Wie gross ist der Teilstrom durch den Widerstand R_? abcliste centernoindent tikzpicture nodeleft at -. U_; drawthick -..--..; drawthick -.-.--.-.; drawthick .--.--..--.--; drawthick ..--.--; drawthick -.---.---.--.-.--..--.; drawthick .--..--.--; drawthick --.--..; drawthick -. rectangle .; drawthick . rectangle .; drawthick . rectangle .; node at R_pqOmega; node at R_pqOmega; node at . R_; tikzpicture center
Solution:
abcliste abc Der Ersatzwiderstand von R_ und R_ ist pqOmega Parallelschaltung. Daher muss R_pqOmega sein. abc Der Totalstrom ist Itot fracU_R fracpqVpqOmega pq.A. abc Da über dem Widerstand R_ die Spannung U_R_ Itot pq.V abfällt fallen über R_ nur pq.V ab. abc Da durch den Widerstand R_ ein Strom von I_fracU_R_ pq.A fliesst fliessen durch R_ wegen der Knotenregel pq.A-pq.A pq.A. abcliste
Folg gibt jede Teilaufgabe einen Punkt. Der Rechnungsweg wird auch bewertet. Richtige Resultate ohne ersichtliche Berechnung geben keine Punkte. Der Ersatzwiderstand der Schaltung unten sei pqOmega. Die anliege Spannung ist U_pqV. TwoColumnExercise.. abcliste abc Wie gross ist der Widerstand R_? abc Wie gross ist der Totalstrom Itot? abc Wie gross ist die Spannung die über dem Widerstand R_ abfällt? abc Wie gross ist der Teilstrom durch den Widerstand R_? abcliste centernoindent tikzpicture nodeleft at -. U_; drawthick -..--..; drawthick -.-.--.-.; drawthick .--.--..--.--; drawthick ..--.--; drawthick -.---.---.--.-.--..--.; drawthick .--..--.--; drawthick --.--..; drawthick -. rectangle .; drawthick . rectangle .; drawthick . rectangle .; node at R_pqOmega; node at R_pqOmega; node at . R_; tikzpicture center
Solution:
abcliste abc Der Ersatzwiderstand von R_ und R_ ist pqOmega Parallelschaltung. Daher muss R_pqOmega sein. abc Der Totalstrom ist Itot fracU_R fracpqVpqOmega pq.A. abc Da über dem Widerstand R_ die Spannung U_R_ Itot pq.V abfällt fallen über R_ nur pq.V ab. abc Da durch den Widerstand R_ ein Strom von I_fracU_R_ pq.A fliesst fliessen durch R_ wegen der Knotenregel pq.A-pq.A pq.A. abcliste
Contained in these collections:
-
-
Gleichstrom-Sudoku light by TeXercises