Ersatzwiderstand III
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
elektrischer Widerstand \(R\) / Federkonstante \(D\) /
The following formulas must be used to solve the exercise:
\(\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \quad \) \(\frac{1}{D} = \frac{1}{D_1} + \frac{1}{D_2} \quad \) \(R = R_1 + R_2 \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Bestimmen Sie für diese unliche Serienschaltung von Parallelschaltungen den Ersatzwiderstand zwischen den Punkten a und b. Alle Widerstände haben den Wert R; P_n bedeutet dass n Widerstände parallel geschaltet werden. center tikzpicturescale. draw thick -- ; draw fillblack circle mm node above a; draw thick -. rectangle node belowyshift-.cm P_.; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % usw draw thick -- ; node at P_; draw thick -- ; draw dashed -- ; draw thick -- ; draw fillblack circle mm node above b; tikzpicture center
Solution:
Allgemein gilt für n parallel geschaltete Widerstände mit dem Betrag R fracR_ersn fracR+fracR + ... +fracR fracR_k^n fracnRRightarrow R_ersn fracRn. In dieser Aufgabe wurde dies als P_n fracRn definiert. Somit haben wir für diese Serienschaltung: R_ersinfty P_ + P_ + P_ + ... R left+frac+frac + frac + ... right. Die Klammer entspricht der Summe der Kehrwerte der Quadratzahlen also R_ersinfty R_k^infty frack^ fracpi^R.
Bestimmen Sie für diese unliche Serienschaltung von Parallelschaltungen den Ersatzwiderstand zwischen den Punkten a und b. Alle Widerstände haben den Wert R; P_n bedeutet dass n Widerstände parallel geschaltet werden. center tikzpicturescale. draw thick -- ; draw fillblack circle mm node above a; draw thick -. rectangle node belowyshift-.cm P_.; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % usw draw thick -- ; node at P_; draw thick -- ; draw dashed -- ; draw thick -- ; draw fillblack circle mm node above b; tikzpicture center
Solution:
Allgemein gilt für n parallel geschaltete Widerstände mit dem Betrag R fracR_ersn fracR+fracR + ... +fracR fracR_k^n fracnRRightarrow R_ersn fracRn. In dieser Aufgabe wurde dies als P_n fracRn definiert. Somit haben wir für diese Serienschaltung: R_ersinfty P_ + P_ + P_ + ... R left+frac+frac + frac + ... right. Die Klammer entspricht der Summe der Kehrwerte der Quadratzahlen also R_ersinfty R_k^infty frack^ fracpi^R.
Meta Information
Exercise:
Bestimmen Sie für diese unliche Serienschaltung von Parallelschaltungen den Ersatzwiderstand zwischen den Punkten a und b. Alle Widerstände haben den Wert R; P_n bedeutet dass n Widerstände parallel geschaltet werden. center tikzpicturescale. draw thick -- ; draw fillblack circle mm node above a; draw thick -. rectangle node belowyshift-.cm P_.; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % usw draw thick -- ; node at P_; draw thick -- ; draw dashed -- ; draw thick -- ; draw fillblack circle mm node above b; tikzpicture center
Solution:
Allgemein gilt für n parallel geschaltete Widerstände mit dem Betrag R fracR_ersn fracR+fracR + ... +fracR fracR_k^n fracnRRightarrow R_ersn fracRn. In dieser Aufgabe wurde dies als P_n fracRn definiert. Somit haben wir für diese Serienschaltung: R_ersinfty P_ + P_ + P_ + ... R left+frac+frac + frac + ... right. Die Klammer entspricht der Summe der Kehrwerte der Quadratzahlen also R_ersinfty R_k^infty frack^ fracpi^R.
Bestimmen Sie für diese unliche Serienschaltung von Parallelschaltungen den Ersatzwiderstand zwischen den Punkten a und b. Alle Widerstände haben den Wert R; P_n bedeutet dass n Widerstände parallel geschaltet werden. center tikzpicturescale. draw thick -- ; draw fillblack circle mm node above a; draw thick -. rectangle node belowyshift-.cm P_.; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % Paralle draw thick -- ; draw thick - -- ; foreach y in --... draw thick y -- y; draw thick y-. rectangle y+.; draw thick y -- y; draw thick - -- ; node at -. P_; % usw draw thick -- ; node at P_; draw thick -- ; draw dashed -- ; draw thick -- ; draw fillblack circle mm node above b; tikzpicture center
Solution:
Allgemein gilt für n parallel geschaltete Widerstände mit dem Betrag R fracR_ersn fracR+fracR + ... +fracR fracR_k^n fracnRRightarrow R_ersn fracRn. In dieser Aufgabe wurde dies als P_n fracRn definiert. Somit haben wir für diese Serienschaltung: R_ersinfty P_ + P_ + P_ + ... R left+frac+frac + frac + ... right. Die Klammer entspricht der Summe der Kehrwerte der Quadratzahlen also R_ersinfty R_k^infty frack^ fracpi^R.
Contained in these collections:
-
Ersatzwiderstand von Schaltung by TeXercises