Explodierende Kokosnuss
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Knallkörper explodiert in einer ruhen Kokosnussschale mit M Masse woraufhin diese wie im Bild dargestellt in drei Teile zerbricht. Wie gross sind die Geschwindigkeiten der Teile mathcalA mit Masse .M und mathcalB mit Masse .M falls das Teilstück mathcalC eine solche von vcO hat? center tikzpicturescale. scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; tikzpicture center
Solution:
Wir wählen das Koordinatensystem so dass die Geschwindigkeit sscvc des Teilstücks mathcalC entlang der x-Achse liegt. center tikzpicturescale. rotat scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; drawcolorblue-stealth :. arc ::. nodemidway left alphaang; drawcolorblue-stealth :. arc ::. nodemidway left betaang; tikzpicture center textbfImpulserhaltung in x-Richtung sscpA_x + sscpB_x + sscpC_x sscmA sscvA_x + sscmB sscvB_x + sscmC sscvC_x .M sscvA_x + .M sscvB_x + .M sscvC_x . sscvA cosalpha + . sscvB cosbeta + . sscvC textbfImpulserhaltung in y-Richtung sscpA_y + sscpB_y + sscpC_y sscmA sscvA_y + sscmB sscvB_y + sscmC sscvC_y .M sscvA_y + .M sscvB_y . sscvA sinalpha + . sscvB sinbeta Das ist ein Gleichungssystem mit zwei Gleichungen und zwei Unbekannten. Löst man die zweite Gleichung nach sscvB -. sscvA fracsinalphasinbeta auf setzt das bei der ersten Gleichung ein . sscvC -sscvA cosalpha + . -. sscvA fracsinalphasinbeta cosbeta -sscvA leftcosalpha + fracsinalphatanbeta right und löst das nach sscvA -frac.cosalpha + fracsinalphatanbeta sscvC va so findet man für sscvB -. sscvA fracsinalphasinbeta vb.
Ein Knallkörper explodiert in einer ruhen Kokosnussschale mit M Masse woraufhin diese wie im Bild dargestellt in drei Teile zerbricht. Wie gross sind die Geschwindigkeiten der Teile mathcalA mit Masse .M und mathcalB mit Masse .M falls das Teilstück mathcalC eine solche von vcO hat? center tikzpicturescale. scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; tikzpicture center
Solution:
Wir wählen das Koordinatensystem so dass die Geschwindigkeit sscvc des Teilstücks mathcalC entlang der x-Achse liegt. center tikzpicturescale. rotat scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; drawcolorblue-stealth :. arc ::. nodemidway left alphaang; drawcolorblue-stealth :. arc ::. nodemidway left betaang; tikzpicture center textbfImpulserhaltung in x-Richtung sscpA_x + sscpB_x + sscpC_x sscmA sscvA_x + sscmB sscvB_x + sscmC sscvC_x .M sscvA_x + .M sscvB_x + .M sscvC_x . sscvA cosalpha + . sscvB cosbeta + . sscvC textbfImpulserhaltung in y-Richtung sscpA_y + sscpB_y + sscpC_y sscmA sscvA_y + sscmB sscvB_y + sscmC sscvC_y .M sscvA_y + .M sscvB_y . sscvA sinalpha + . sscvB sinbeta Das ist ein Gleichungssystem mit zwei Gleichungen und zwei Unbekannten. Löst man die zweite Gleichung nach sscvB -. sscvA fracsinalphasinbeta auf setzt das bei der ersten Gleichung ein . sscvC -sscvA cosalpha + . -. sscvA fracsinalphasinbeta cosbeta -sscvA leftcosalpha + fracsinalphatanbeta right und löst das nach sscvA -frac.cosalpha + fracsinalphatanbeta sscvC va so findet man für sscvB -. sscvA fracsinalphasinbeta vb.
Meta Information
Exercise:
Ein Knallkörper explodiert in einer ruhen Kokosnussschale mit M Masse woraufhin diese wie im Bild dargestellt in drei Teile zerbricht. Wie gross sind die Geschwindigkeiten der Teile mathcalA mit Masse .M und mathcalB mit Masse .M falls das Teilstück mathcalC eine solche von vcO hat? center tikzpicturescale. scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; tikzpicture center
Solution:
Wir wählen das Koordinatensystem so dass die Geschwindigkeit sscvc des Teilstücks mathcalC entlang der x-Achse liegt. center tikzpicturescale. rotat scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; drawcolorblue-stealth :. arc ::. nodemidway left alphaang; drawcolorblue-stealth :. arc ::. nodemidway left betaang; tikzpicture center textbfImpulserhaltung in x-Richtung sscpA_x + sscpB_x + sscpC_x sscmA sscvA_x + sscmB sscvB_x + sscmC sscvC_x .M sscvA_x + .M sscvB_x + .M sscvC_x . sscvA cosalpha + . sscvB cosbeta + . sscvC textbfImpulserhaltung in y-Richtung sscpA_y + sscpB_y + sscpC_y sscmA sscvA_y + sscmB sscvB_y + sscmC sscvC_y .M sscvA_y + .M sscvB_y . sscvA sinalpha + . sscvB sinbeta Das ist ein Gleichungssystem mit zwei Gleichungen und zwei Unbekannten. Löst man die zweite Gleichung nach sscvB -. sscvA fracsinalphasinbeta auf setzt das bei der ersten Gleichung ein . sscvC -sscvA cosalpha + . -. sscvA fracsinalphasinbeta cosbeta -sscvA leftcosalpha + fracsinalphatanbeta right und löst das nach sscvA -frac.cosalpha + fracsinalphatanbeta sscvC va so findet man für sscvB -. sscvA fracsinalphasinbeta vb.
Ein Knallkörper explodiert in einer ruhen Kokosnussschale mit M Masse woraufhin diese wie im Bild dargestellt in drei Teile zerbricht. Wie gross sind die Geschwindigkeiten der Teile mathcalA mit Masse .M und mathcalB mit Masse .M falls das Teilstück mathcalC eine solche von vcO hat? center tikzpicturescale. scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; tikzpicture center
Solution:
Wir wählen das Koordinatensystem so dass die Geschwindigkeit sscvc des Teilstücks mathcalC entlang der x-Achse liegt. center tikzpicturescale. rotat scope filldrawcolorblack fillRawSienna --Kora arc::Kora--cycle; scope scopexshiftmm yshift-mm rotat filldrawcolorblack fillRawSienna --:Kora arc::Kora--cycle; scope scopexshiftmm yshiftmm rotate filldrawcolorblack fillRawSienna --:Kora arc-::Kora--cycle; scope draw-stealth :.--:. nodeleft sscvA; draw-stealth :.--:. nodebelow sscvB; draw-stealth :.--:. noderight sscvC; drawcolorgreen-stealth :. arc ::. nodemidway above ang; drawcolorgreen-stealth :. arc -::. nodemidway right ang; drawcolorblue-stealth :. arc ::. nodemidway left alphaang; drawcolorblue-stealth :. arc ::. nodemidway left betaang; tikzpicture center textbfImpulserhaltung in x-Richtung sscpA_x + sscpB_x + sscpC_x sscmA sscvA_x + sscmB sscvB_x + sscmC sscvC_x .M sscvA_x + .M sscvB_x + .M sscvC_x . sscvA cosalpha + . sscvB cosbeta + . sscvC textbfImpulserhaltung in y-Richtung sscpA_y + sscpB_y + sscpC_y sscmA sscvA_y + sscmB sscvB_y + sscmC sscvC_y .M sscvA_y + .M sscvB_y . sscvA sinalpha + . sscvB sinbeta Das ist ein Gleichungssystem mit zwei Gleichungen und zwei Unbekannten. Löst man die zweite Gleichung nach sscvB -. sscvA fracsinalphasinbeta auf setzt das bei der ersten Gleichung ein . sscvC -sscvA cosalpha + . -. sscvA fracsinalphasinbeta cosbeta -sscvA leftcosalpha + fracsinalphatanbeta right und löst das nach sscvA -frac.cosalpha + fracsinalphatanbeta sscvC va so findet man für sscvB -. sscvA fracsinalphasinbeta vb.
Contained in these collections:
-
Unelastischer Stoss by uz