Flüssiges Blei schmilzt Eis
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Temperatur \(T\) / Wärme \(Q\) / spezifische latente Wärme \(L\) / Wärmekapazität \(c\) /
The following formulas must be used to solve the exercise:
\(Q = c \cdot m \cdot \Delta\vartheta \quad \) \(Q = m \cdot L_{\scriptscriptstyle\rm f} \quad \) \(\sum Q^\nearrow \stackrel{!}{=} \sum Q^\swarrow \quad \)
No explanation / solution video for this exercise has yet been created.
But there is a video to a similar exercise:
In case your browser prevents YouTube embedding: https://youtu.be/KpK02We2DB4
But there is a video to a similar exercise:
Exercise:
Wie viel Eis von -cel lässt sich mit kg flüssigem Blei von cel schmelzen wenn das Schmelzwasser cel warm werden soll?
Solution:
Geg.: T_mathrmE-cel T_mathrmPbcel T_mathrmfPb.cel T_mathrmmcel Ges.: m_mathrmE Man muss insgesamt Prozesse berücksichtigen: itemize item Eis erwärmen: Q_c_mathrmEm_mathrmEDelta T_ item Eis schmelzen: Q_m_mathrmEL_mathrmfE item Eiswasser erwärmen: Q_c_mathrmwm_mathrmEDelta T_ item Flüssiges Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ item Blei erstarren: Q_m_mathrmPbL_mathrmfPb item Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ itemize noindent Nun gilt: Q_+Q_+Q_Q_+Q_+Q_ Damit erhalten wir indem wir die Massen links und rechts gleich ausklammern: m_mathrmEc_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_m_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_ Und damit ergibt sich: m_mathrmEfracm_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_c_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_res.kg Die entsprechen Konstanten findet man im Formelbuch: L_mathrmfPb.^siJ/kg c_mathrmPbsiJkg^-K^- c_mathrmEsiJkg^-K^- c_mathrmwsiJkg^-K^- L_mathrmfE.^siJ/kg Für flüssiges Blei wird angenommen dass es dieselbe spezifische Wärmekapazität wie festes Blei hat.
Wie viel Eis von -cel lässt sich mit kg flüssigem Blei von cel schmelzen wenn das Schmelzwasser cel warm werden soll?
Solution:
Geg.: T_mathrmE-cel T_mathrmPbcel T_mathrmfPb.cel T_mathrmmcel Ges.: m_mathrmE Man muss insgesamt Prozesse berücksichtigen: itemize item Eis erwärmen: Q_c_mathrmEm_mathrmEDelta T_ item Eis schmelzen: Q_m_mathrmEL_mathrmfE item Eiswasser erwärmen: Q_c_mathrmwm_mathrmEDelta T_ item Flüssiges Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ item Blei erstarren: Q_m_mathrmPbL_mathrmfPb item Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ itemize noindent Nun gilt: Q_+Q_+Q_Q_+Q_+Q_ Damit erhalten wir indem wir die Massen links und rechts gleich ausklammern: m_mathrmEc_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_m_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_ Und damit ergibt sich: m_mathrmEfracm_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_c_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_res.kg Die entsprechen Konstanten findet man im Formelbuch: L_mathrmfPb.^siJ/kg c_mathrmPbsiJkg^-K^- c_mathrmEsiJkg^-K^- c_mathrmwsiJkg^-K^- L_mathrmfE.^siJ/kg Für flüssiges Blei wird angenommen dass es dieselbe spezifische Wärmekapazität wie festes Blei hat.
Meta Information
Exercise:
Wie viel Eis von -cel lässt sich mit kg flüssigem Blei von cel schmelzen wenn das Schmelzwasser cel warm werden soll?
Solution:
Geg.: T_mathrmE-cel T_mathrmPbcel T_mathrmfPb.cel T_mathrmmcel Ges.: m_mathrmE Man muss insgesamt Prozesse berücksichtigen: itemize item Eis erwärmen: Q_c_mathrmEm_mathrmEDelta T_ item Eis schmelzen: Q_m_mathrmEL_mathrmfE item Eiswasser erwärmen: Q_c_mathrmwm_mathrmEDelta T_ item Flüssiges Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ item Blei erstarren: Q_m_mathrmPbL_mathrmfPb item Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ itemize noindent Nun gilt: Q_+Q_+Q_Q_+Q_+Q_ Damit erhalten wir indem wir die Massen links und rechts gleich ausklammern: m_mathrmEc_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_m_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_ Und damit ergibt sich: m_mathrmEfracm_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_c_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_res.kg Die entsprechen Konstanten findet man im Formelbuch: L_mathrmfPb.^siJ/kg c_mathrmPbsiJkg^-K^- c_mathrmEsiJkg^-K^- c_mathrmwsiJkg^-K^- L_mathrmfE.^siJ/kg Für flüssiges Blei wird angenommen dass es dieselbe spezifische Wärmekapazität wie festes Blei hat.
Wie viel Eis von -cel lässt sich mit kg flüssigem Blei von cel schmelzen wenn das Schmelzwasser cel warm werden soll?
Solution:
Geg.: T_mathrmE-cel T_mathrmPbcel T_mathrmfPb.cel T_mathrmmcel Ges.: m_mathrmE Man muss insgesamt Prozesse berücksichtigen: itemize item Eis erwärmen: Q_c_mathrmEm_mathrmEDelta T_ item Eis schmelzen: Q_m_mathrmEL_mathrmfE item Eiswasser erwärmen: Q_c_mathrmwm_mathrmEDelta T_ item Flüssiges Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ item Blei erstarren: Q_m_mathrmPbL_mathrmfPb item Blei abkühlen: Q_c_mathrmPbm_mathrmPbDelta T_ itemize noindent Nun gilt: Q_+Q_+Q_Q_+Q_+Q_ Damit erhalten wir indem wir die Massen links und rechts gleich ausklammern: m_mathrmEc_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_m_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_ Und damit ergibt sich: m_mathrmEfracm_mathrmPbc_mathrmPbDelta T_+L_mathrmfPb+c_mathrmPbDelta T_c_mathrmEDelta T_+L_mathrmfE+c_mathrmwDelta T_res.kg Die entsprechen Konstanten findet man im Formelbuch: L_mathrmfPb.^siJ/kg c_mathrmPbsiJkg^-K^- c_mathrmEsiJkg^-K^- c_mathrmwsiJkg^-K^- L_mathrmfE.^siJ/kg Für flüssiges Blei wird angenommen dass es dieselbe spezifische Wärmekapazität wie festes Blei hat.
Contained in these collections:
-
Mischen mit Erstarrungswärme by TeXercises