Geometrische Optik : Reflexion und Brechung 7
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Lichtstrahl durchquert wie in Abb.reffig:DovePrisma dargestellt ein DovPrisma trapezförmiges Prisma mit zwei sidegre resp. pi/-Basiswinkeln. Der Einfallsstrahl sei parallel zur Basis. a Zeigen Sie dass der austrete Strahl parallel zum einfallen Strahl ist. b Kann unten Totalreflexion auftreten für ein Prisma aus Plexiglas? ohne Schlussformel c Warum nennt man das DovPrisma auch Umkehrprisma? figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Solution:
% . März Lie. a Siehe Abbildung reffig:DovePrisma und deren Lege. b ed t &n. quad alpha_arcsinn^-arcsinalpha_ arcsinsinsidegree/. .sidegree &nsinalpha_ nsinsidegree+alpha_ .sinsidegree+.sidegree . overset? sinsidegree checkmark ed c Von zwei parallel ereffen Strahlen ist der obere nach dem Durchgang der untere. minipage.textwidth captlabelfig:DovePrisma Strahlengang im Prisma. Dreieck EBA ist ähnlich Dreieck DBC wegen sidegree Winkel bei E resp. D und Reflexion bei B. Der Brechungswinkel bei A ist also gleich dem Einfallswinkel bei C. Somit wird die Brechung bei A rückgängig gemacht bei C. minipage hfill minipage.textwidth includegraphicsGrafiken/DovePrisma/DovePrisma.pdf minipage newpage figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Ein Lichtstrahl durchquert wie in Abb.reffig:DovePrisma dargestellt ein DovPrisma trapezförmiges Prisma mit zwei sidegre resp. pi/-Basiswinkeln. Der Einfallsstrahl sei parallel zur Basis. a Zeigen Sie dass der austrete Strahl parallel zum einfallen Strahl ist. b Kann unten Totalreflexion auftreten für ein Prisma aus Plexiglas? ohne Schlussformel c Warum nennt man das DovPrisma auch Umkehrprisma? figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Solution:
% . März Lie. a Siehe Abbildung reffig:DovePrisma und deren Lege. b ed t &n. quad alpha_arcsinn^-arcsinalpha_ arcsinsinsidegree/. .sidegree &nsinalpha_ nsinsidegree+alpha_ .sinsidegree+.sidegree . overset? sinsidegree checkmark ed c Von zwei parallel ereffen Strahlen ist der obere nach dem Durchgang der untere. minipage.textwidth captlabelfig:DovePrisma Strahlengang im Prisma. Dreieck EBA ist ähnlich Dreieck DBC wegen sidegree Winkel bei E resp. D und Reflexion bei B. Der Brechungswinkel bei A ist also gleich dem Einfallswinkel bei C. Somit wird die Brechung bei A rückgängig gemacht bei C. minipage hfill minipage.textwidth includegraphicsGrafiken/DovePrisma/DovePrisma.pdf minipage newpage figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Meta Information
Exercise:
Ein Lichtstrahl durchquert wie in Abb.reffig:DovePrisma dargestellt ein DovPrisma trapezförmiges Prisma mit zwei sidegre resp. pi/-Basiswinkeln. Der Einfallsstrahl sei parallel zur Basis. a Zeigen Sie dass der austrete Strahl parallel zum einfallen Strahl ist. b Kann unten Totalreflexion auftreten für ein Prisma aus Plexiglas? ohne Schlussformel c Warum nennt man das DovPrisma auch Umkehrprisma? figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Solution:
% . März Lie. a Siehe Abbildung reffig:DovePrisma und deren Lege. b ed t &n. quad alpha_arcsinn^-arcsinalpha_ arcsinsinsidegree/. .sidegree &nsinalpha_ nsinsidegree+alpha_ .sinsidegree+.sidegree . overset? sinsidegree checkmark ed c Von zwei parallel ereffen Strahlen ist der obere nach dem Durchgang der untere. minipage.textwidth captlabelfig:DovePrisma Strahlengang im Prisma. Dreieck EBA ist ähnlich Dreieck DBC wegen sidegree Winkel bei E resp. D und Reflexion bei B. Der Brechungswinkel bei A ist also gleich dem Einfallswinkel bei C. Somit wird die Brechung bei A rückgängig gemacht bei C. minipage hfill minipage.textwidth includegraphicsGrafiken/DovePrisma/DovePrisma.pdf minipage newpage figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Ein Lichtstrahl durchquert wie in Abb.reffig:DovePrisma dargestellt ein DovPrisma trapezförmiges Prisma mit zwei sidegre resp. pi/-Basiswinkeln. Der Einfallsstrahl sei parallel zur Basis. a Zeigen Sie dass der austrete Strahl parallel zum einfallen Strahl ist. b Kann unten Totalreflexion auftreten für ein Prisma aus Plexiglas? ohne Schlussformel c Warum nennt man das DovPrisma auch Umkehrprisma? figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Solution:
% . März Lie. a Siehe Abbildung reffig:DovePrisma und deren Lege. b ed t &n. quad alpha_arcsinn^-arcsinalpha_ arcsinsinsidegree/. .sidegree &nsinalpha_ nsinsidegree+alpha_ .sinsidegree+.sidegree . overset? sinsidegree checkmark ed c Von zwei parallel ereffen Strahlen ist der obere nach dem Durchgang der untere. minipage.textwidth captlabelfig:DovePrisma Strahlengang im Prisma. Dreieck EBA ist ähnlich Dreieck DBC wegen sidegree Winkel bei E resp. D und Reflexion bei B. Der Brechungswinkel bei A ist also gleich dem Einfallswinkel bei C. Somit wird die Brechung bei A rückgängig gemacht bei C. minipage hfill minipage.textwidth includegraphicsGrafiken/DovePrisma/DovePrisma.pdf minipage newpage figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure figureH includegraphicswidthtextwidth#image_path:DovePrisma# caption labelfig:DovePrisma figure
Contained in these collections: