Geostationärer Satellit für Mars
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Kraft \(F\) / Radius \(r\) / Winkelgeschwindigkeit / Kreisfrequenz \(\omega\) /
The following formulas must be used to solve the exercise:
\(F = G \dfrac{m_1m_2}{r^2} \quad \) \(F = mr\omega^2 \quad \)
No explanation / solution video for this exercise has yet been created.
But there is a video to a similar exercise:
In case your browser prevents YouTube embedding: https://youtu.be/zZE5L7rMvfc
But there is a video to a similar exercise:
Exercise:
Eine zukünftige Zivilisation auf Mars soll einen geostationären Satelliten kg in die Umlaufbahn von Mars bringen. Der Mars hat eine Masse von .ekg einen Durchmesser von km und ein Tag auf Mars dauert h~min~s. Berechne die kinetische und die potentielle Energie eines solchen Satelliten.
Solution:
Kreisbahnradius und Kreisbahngeschwindigkeit bedingen sich für Satelliten gegenseitig und zwar über folge Beziehung: FZ FG mromega^ GfracMmr^ r sqrtfracGMomega^ sqrtfracGMT^pi^ sqrtfrac.cubicmeterperkilogrampersecondsquared .ekg qty.es^pi^ .em Die Höhe über der Marsoberfläche ist somit: h r-R sqrtfracGMT^pi^-R .em - .em .em Die Bahngeschwindigkeit eines solchen Satelliten beträgt also: v romega rfracpiT fracpiT sqrtfracGMT^pi^ .e Somit können nun potentielle und kinetische Energie ausgerechnet werden: Epot GMmleftfracR-fracR+hright .cubicmeterperkilogrampersecondsquared .ekg kg leftfrac.em-frac.emright .eJ quad textbei kg Masse .eJ quad textbei kg Masse Ekin frac mv^ frac kg qty.e^ .eJ quad textbei kg Masse .eJ quad textbei kg Masse
Eine zukünftige Zivilisation auf Mars soll einen geostationären Satelliten kg in die Umlaufbahn von Mars bringen. Der Mars hat eine Masse von .ekg einen Durchmesser von km und ein Tag auf Mars dauert h~min~s. Berechne die kinetische und die potentielle Energie eines solchen Satelliten.
Solution:
Kreisbahnradius und Kreisbahngeschwindigkeit bedingen sich für Satelliten gegenseitig und zwar über folge Beziehung: FZ FG mromega^ GfracMmr^ r sqrtfracGMomega^ sqrtfracGMT^pi^ sqrtfrac.cubicmeterperkilogrampersecondsquared .ekg qty.es^pi^ .em Die Höhe über der Marsoberfläche ist somit: h r-R sqrtfracGMT^pi^-R .em - .em .em Die Bahngeschwindigkeit eines solchen Satelliten beträgt also: v romega rfracpiT fracpiT sqrtfracGMT^pi^ .e Somit können nun potentielle und kinetische Energie ausgerechnet werden: Epot GMmleftfracR-fracR+hright .cubicmeterperkilogrampersecondsquared .ekg kg leftfrac.em-frac.emright .eJ quad textbei kg Masse .eJ quad textbei kg Masse Ekin frac mv^ frac kg qty.e^ .eJ quad textbei kg Masse .eJ quad textbei kg Masse
Meta Information
Exercise:
Eine zukünftige Zivilisation auf Mars soll einen geostationären Satelliten kg in die Umlaufbahn von Mars bringen. Der Mars hat eine Masse von .ekg einen Durchmesser von km und ein Tag auf Mars dauert h~min~s. Berechne die kinetische und die potentielle Energie eines solchen Satelliten.
Solution:
Kreisbahnradius und Kreisbahngeschwindigkeit bedingen sich für Satelliten gegenseitig und zwar über folge Beziehung: FZ FG mromega^ GfracMmr^ r sqrtfracGMomega^ sqrtfracGMT^pi^ sqrtfrac.cubicmeterperkilogrampersecondsquared .ekg qty.es^pi^ .em Die Höhe über der Marsoberfläche ist somit: h r-R sqrtfracGMT^pi^-R .em - .em .em Die Bahngeschwindigkeit eines solchen Satelliten beträgt also: v romega rfracpiT fracpiT sqrtfracGMT^pi^ .e Somit können nun potentielle und kinetische Energie ausgerechnet werden: Epot GMmleftfracR-fracR+hright .cubicmeterperkilogrampersecondsquared .ekg kg leftfrac.em-frac.emright .eJ quad textbei kg Masse .eJ quad textbei kg Masse Ekin frac mv^ frac kg qty.e^ .eJ quad textbei kg Masse .eJ quad textbei kg Masse
Eine zukünftige Zivilisation auf Mars soll einen geostationären Satelliten kg in die Umlaufbahn von Mars bringen. Der Mars hat eine Masse von .ekg einen Durchmesser von km und ein Tag auf Mars dauert h~min~s. Berechne die kinetische und die potentielle Energie eines solchen Satelliten.
Solution:
Kreisbahnradius und Kreisbahngeschwindigkeit bedingen sich für Satelliten gegenseitig und zwar über folge Beziehung: FZ FG mromega^ GfracMmr^ r sqrtfracGMomega^ sqrtfracGMT^pi^ sqrtfrac.cubicmeterperkilogrampersecondsquared .ekg qty.es^pi^ .em Die Höhe über der Marsoberfläche ist somit: h r-R sqrtfracGMT^pi^-R .em - .em .em Die Bahngeschwindigkeit eines solchen Satelliten beträgt also: v romega rfracpiT fracpiT sqrtfracGMT^pi^ .e Somit können nun potentielle und kinetische Energie ausgerechnet werden: Epot GMmleftfracR-fracR+hright .cubicmeterperkilogrampersecondsquared .ekg kg leftfrac.em-frac.emright .eJ quad textbei kg Masse .eJ quad textbei kg Masse Ekin frac mv^ frac kg qty.e^ .eJ quad textbei kg Masse .eJ quad textbei kg Masse
Contained in these collections:
-
Abstand von Satellit by TeXercises