Hufschmied II
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Temperatur \(T\) / Wärme \(Q\) / spezifische latente Wärme \(L\) / Wärmekapazität \(c\) /
The following formulas must be used to solve the exercise:
\(Q = c \cdot m \cdot \Delta\vartheta \quad \) \(Q = m \cdot L_{\scriptscriptstyle\rm v} \quad \) \(\sum Q^\nearrow \stackrel{!}{=} \sum Q^\swarrow \quad \)
No explanation / solution video for this exercise has yet been created.
But there is a video to a similar exercise:
In case your browser prevents YouTube embedding: https://youtu.be/iW6NRIEawLQ
But there is a video to a similar exercise:
Exercise:
Ein Hufschmied will sein Hufeisen in Wasser abkühlen. Das Hufeisen m_H gram hat vor dem Abkühlen eine Temperatur von vartheta_H cel. Welche Menge Wasser ist mindestens notwig wenn am Schluss die Hälfte davon noch im flüssigen Zustand sein soll? Der Wassereimer steht schon länger im Raum und hat eine Temperatur von vartheta_W cel.
Solution:
Die maximale Wärmemenge die abgegeben werden kann ist: Q_ab c_Fem_HDelta T approx kiloJ wobei Delta T cel ist. Damit soll die gesamte Menge Wasser m_W erwärmt und die Hälfte davon verdampft werden d.h. Q_auf m_Wc_WDelta T' + fracm_WL_v Q_ab. Aufgelöst nach der gesuchten Grösse erhalten wir: m_W fracQ_abc_WDelta T' + fracL_v approx .kg wobei Delta T' cel ist.
Ein Hufschmied will sein Hufeisen in Wasser abkühlen. Das Hufeisen m_H gram hat vor dem Abkühlen eine Temperatur von vartheta_H cel. Welche Menge Wasser ist mindestens notwig wenn am Schluss die Hälfte davon noch im flüssigen Zustand sein soll? Der Wassereimer steht schon länger im Raum und hat eine Temperatur von vartheta_W cel.
Solution:
Die maximale Wärmemenge die abgegeben werden kann ist: Q_ab c_Fem_HDelta T approx kiloJ wobei Delta T cel ist. Damit soll die gesamte Menge Wasser m_W erwärmt und die Hälfte davon verdampft werden d.h. Q_auf m_Wc_WDelta T' + fracm_WL_v Q_ab. Aufgelöst nach der gesuchten Grösse erhalten wir: m_W fracQ_abc_WDelta T' + fracL_v approx .kg wobei Delta T' cel ist.
Meta Information
Exercise:
Ein Hufschmied will sein Hufeisen in Wasser abkühlen. Das Hufeisen m_H gram hat vor dem Abkühlen eine Temperatur von vartheta_H cel. Welche Menge Wasser ist mindestens notwig wenn am Schluss die Hälfte davon noch im flüssigen Zustand sein soll? Der Wassereimer steht schon länger im Raum und hat eine Temperatur von vartheta_W cel.
Solution:
Die maximale Wärmemenge die abgegeben werden kann ist: Q_ab c_Fem_HDelta T approx kiloJ wobei Delta T cel ist. Damit soll die gesamte Menge Wasser m_W erwärmt und die Hälfte davon verdampft werden d.h. Q_auf m_Wc_WDelta T' + fracm_WL_v Q_ab. Aufgelöst nach der gesuchten Grösse erhalten wir: m_W fracQ_abc_WDelta T' + fracL_v approx .kg wobei Delta T' cel ist.
Ein Hufschmied will sein Hufeisen in Wasser abkühlen. Das Hufeisen m_H gram hat vor dem Abkühlen eine Temperatur von vartheta_H cel. Welche Menge Wasser ist mindestens notwig wenn am Schluss die Hälfte davon noch im flüssigen Zustand sein soll? Der Wassereimer steht schon länger im Raum und hat eine Temperatur von vartheta_W cel.
Solution:
Die maximale Wärmemenge die abgegeben werden kann ist: Q_ab c_Fem_HDelta T approx kiloJ wobei Delta T cel ist. Damit soll die gesamte Menge Wasser m_W erwärmt und die Hälfte davon verdampft werden d.h. Q_auf m_Wc_WDelta T' + fracm_WL_v Q_ab. Aufgelöst nach der gesuchten Grösse erhalten wir: m_W fracQ_abc_WDelta T' + fracL_v approx .kg wobei Delta T' cel ist.
Contained in these collections:
-
Mischen mit Kondensationswärme by TeXercises