Integrale mit einfacher Substitution
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
nprvmulticols abclist %a abc displaystyle _^ x^ cosx^ ddx %b abc displaystyle _^ x texte^x^ ddx %c abc displaystyle _^ fracx + ddx %d abc displaystyle _^ fracxx^ + ddx %e abc displaystyle sinx + ddx %f abc displaystyle _^ fracxx^ + ^ ddx %g abc displaystyle fracx^x^ + ddx %h abc displaystyle fracsqrt - x ddx %i abc displaystyle x lnx^ + ddx abc displaystyle fracxsqrtx^ + ddx %k abc displaystyle _texte^texte^ fracx lnx ddx %l abc displaystyle _^fracpi fraccos^x ddx abc displaystyle x^ sqrtx^ + ddx abc displaystyle fracxx^ - ddx %o abc displaystyle _^ fracx + ^ ddx %p abc displaystyle _^fracln fractexte^x + texte^x ddx abc displaystyle tanx sec^x ddx abc displaystyle fracsqrtx - ddx %s abc displaystyle _^ x sqrt + x^ ddx %t abc displaystyle fracx^x^ + ^ ddx %u abc displaystyle fracsqrt - x ddx %v abc displaystyle _^ fracxsqrtx^ + ddx %w abc displaystyle frac + x + ^ ddx %x abc displaystyle _^frac ln fractexte^xtexte^x + ddx abclist nprvmulticols
Solution:
abclist %a abc Fx tcbhighmathaufgabe_^ x^cosx^ dd x substitutiony:x^quad dd yx^dd x _^ cosy dd y leftsinyright_^ sin-sin tcbhighmathloesungsin %b abc Fx tcbhighmathaufgabe_^ x mathrm e^x^dd x substitutiony:x^quad dd yxdd x frac_^ mathrm e^ydd y frac lefttexte^yright_^ tcbhighmathloesungfraclefttextright %c abc Fx tcbhighmathaufgabe_^ fracx+dd x substitutiony:x+quad dd ydd x frac_^ fracydd y frac leftlnyright_^ fracleftln -ln right tcbhighmathloesungfracln %d abc Fx tcbhighmathaufgabe_^ fracxx^+dd x substitutiony:x^+quad dd yxdd x _^ fracydd y leftlnyright_^ leftln-ln right tcbhighmathloesungln %e abc Fx tcbhighmathaufgabe sinx+dd x substitutiony:x+quad dd ydd x frac sinydd y -frac cosy + C tcbhighmathloesung-tfraccosx++C %f abc Fx tcbhighmathaufgabe_^ fracxx^+^dd x substitutiony:x^+quad dd yxdd x frac_^ y^-dd y fracleft-y^-right_^ fracleft-frac+fracright frac-frac tcbhighmathloesungfrac %g abc Fx tcbhighmathaufgabe fracx^x^+dd x substitutiony:x^+quad dd yx^dd x frac fracydd y frac lny + C tcbhighmathloesungtfracln|x^+|+c %h abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %i abc Fx tcbhighmathaufgabe xlnx^+dd x substitutiony:x^+quad dd yxdd x frac lnydd y fracbiglyln y-ybigr+c tcbhighmathloesungtfracbiglx^+lnx^+-x^+bigr+c %j abc Fx tcbhighmathaufgabe fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac y^-fracdd y tcbhighmathloesungsqrtx^++c %k abc Fx tcbhighmathaufgabe_texte^texte^ fracxln xdd xqquad x substitutiony:ln xquad dd yfracxdd x _^ fracydd y tcbhighmathloesungln|ln x|+c %l abc Für diese Aufgabe muss man die Ableitung des Tangens kennen tanrightarrowfraccos^. Fx tcbhighmathaufgabe_^fracpi fraccos^xdd x sec^xdd x substitutiony:xquad dd ydd x frac_^fracpi sec^ydd y tcbhighmathloesungtfractanx+c %m abc Fx tcbhighmathaufgabe x^sqrtx^+dd x substitutiony:x^+quad dd yx^dd x frac y^fracdd y tcbhighmathloesungtfracx^+^/+c %n abc Fx tcbhighmathaufgabe fracxx^-dd x substitutiony:x^-quad dd yxdd x frac fracydd y tcbhighmathloesungtfracln|x^-|+c %o abc Fx tcbhighmathaufgabe_^ fracx+^dd x substitutiony:x+quad dd ydd x frac_^ y^-dd y tcbhighmathloesung-fracx++c %p abc Fx tcbhighmathaufgabe_^frac ln fracmathrm e^x+mathrm e^xdd x substitutiony:+mathrm e^xquad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!bigl+mathrm e^xbigr+c %q abc Fx tcbhighmathaufgabe tanxsec^xdd x substitutiony:tan xquad dd ysec^ xdd x ydd y tcbhighmathloesungtfractan^x+c %r abc Fx tcbhighmathaufgabe fracsqrtx-dd x substitutiony:x-quad dd ydd x frac y^-fracdd y tcbhighmathloesungtfracsqrtx-+c %s abc Fx tcbhighmathaufgabe_^ xsqrt+x^dd x substitutiony:+x^quad dd yxdd x frac_^ y^fracdd y tcbhighmathloesungtfrac+x^^/+c %t abc Fx tcbhighmathaufgabe fracx^x^+^dd x substitutiony:x^+quad dd yx^dd x frac y^-dd y tcbhighmathloesung-fracx^++c %u abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %v abc Fx tcbhighmathaufgabe_^ fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac_^ y^-fracdd y tcbhighmathloesungtfracsqrtx^++c abc Fx tcbhighmathaufgabe frac+x+^dd x substitutiony:x+quad dd ydd x frac frac+y^dd y tcbhighmathloesungtfracarctanx++c %x abc Fx tcbhighmathaufgabe_^fracln fracmathrm e^xmathrm e^x+dd x substitutiony:mathrm e^x+quad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!biglmathrm e^x+bigr+c abclist
nprvmulticols abclist %a abc displaystyle _^ x^ cosx^ ddx %b abc displaystyle _^ x texte^x^ ddx %c abc displaystyle _^ fracx + ddx %d abc displaystyle _^ fracxx^ + ddx %e abc displaystyle sinx + ddx %f abc displaystyle _^ fracxx^ + ^ ddx %g abc displaystyle fracx^x^ + ddx %h abc displaystyle fracsqrt - x ddx %i abc displaystyle x lnx^ + ddx abc displaystyle fracxsqrtx^ + ddx %k abc displaystyle _texte^texte^ fracx lnx ddx %l abc displaystyle _^fracpi fraccos^x ddx abc displaystyle x^ sqrtx^ + ddx abc displaystyle fracxx^ - ddx %o abc displaystyle _^ fracx + ^ ddx %p abc displaystyle _^fracln fractexte^x + texte^x ddx abc displaystyle tanx sec^x ddx abc displaystyle fracsqrtx - ddx %s abc displaystyle _^ x sqrt + x^ ddx %t abc displaystyle fracx^x^ + ^ ddx %u abc displaystyle fracsqrt - x ddx %v abc displaystyle _^ fracxsqrtx^ + ddx %w abc displaystyle frac + x + ^ ddx %x abc displaystyle _^frac ln fractexte^xtexte^x + ddx abclist nprvmulticols
Solution:
abclist %a abc Fx tcbhighmathaufgabe_^ x^cosx^ dd x substitutiony:x^quad dd yx^dd x _^ cosy dd y leftsinyright_^ sin-sin tcbhighmathloesungsin %b abc Fx tcbhighmathaufgabe_^ x mathrm e^x^dd x substitutiony:x^quad dd yxdd x frac_^ mathrm e^ydd y frac lefttexte^yright_^ tcbhighmathloesungfraclefttextright %c abc Fx tcbhighmathaufgabe_^ fracx+dd x substitutiony:x+quad dd ydd x frac_^ fracydd y frac leftlnyright_^ fracleftln -ln right tcbhighmathloesungfracln %d abc Fx tcbhighmathaufgabe_^ fracxx^+dd x substitutiony:x^+quad dd yxdd x _^ fracydd y leftlnyright_^ leftln-ln right tcbhighmathloesungln %e abc Fx tcbhighmathaufgabe sinx+dd x substitutiony:x+quad dd ydd x frac sinydd y -frac cosy + C tcbhighmathloesung-tfraccosx++C %f abc Fx tcbhighmathaufgabe_^ fracxx^+^dd x substitutiony:x^+quad dd yxdd x frac_^ y^-dd y fracleft-y^-right_^ fracleft-frac+fracright frac-frac tcbhighmathloesungfrac %g abc Fx tcbhighmathaufgabe fracx^x^+dd x substitutiony:x^+quad dd yx^dd x frac fracydd y frac lny + C tcbhighmathloesungtfracln|x^+|+c %h abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %i abc Fx tcbhighmathaufgabe xlnx^+dd x substitutiony:x^+quad dd yxdd x frac lnydd y fracbiglyln y-ybigr+c tcbhighmathloesungtfracbiglx^+lnx^+-x^+bigr+c %j abc Fx tcbhighmathaufgabe fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac y^-fracdd y tcbhighmathloesungsqrtx^++c %k abc Fx tcbhighmathaufgabe_texte^texte^ fracxln xdd xqquad x substitutiony:ln xquad dd yfracxdd x _^ fracydd y tcbhighmathloesungln|ln x|+c %l abc Für diese Aufgabe muss man die Ableitung des Tangens kennen tanrightarrowfraccos^. Fx tcbhighmathaufgabe_^fracpi fraccos^xdd x sec^xdd x substitutiony:xquad dd ydd x frac_^fracpi sec^ydd y tcbhighmathloesungtfractanx+c %m abc Fx tcbhighmathaufgabe x^sqrtx^+dd x substitutiony:x^+quad dd yx^dd x frac y^fracdd y tcbhighmathloesungtfracx^+^/+c %n abc Fx tcbhighmathaufgabe fracxx^-dd x substitutiony:x^-quad dd yxdd x frac fracydd y tcbhighmathloesungtfracln|x^-|+c %o abc Fx tcbhighmathaufgabe_^ fracx+^dd x substitutiony:x+quad dd ydd x frac_^ y^-dd y tcbhighmathloesung-fracx++c %p abc Fx tcbhighmathaufgabe_^frac ln fracmathrm e^x+mathrm e^xdd x substitutiony:+mathrm e^xquad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!bigl+mathrm e^xbigr+c %q abc Fx tcbhighmathaufgabe tanxsec^xdd x substitutiony:tan xquad dd ysec^ xdd x ydd y tcbhighmathloesungtfractan^x+c %r abc Fx tcbhighmathaufgabe fracsqrtx-dd x substitutiony:x-quad dd ydd x frac y^-fracdd y tcbhighmathloesungtfracsqrtx-+c %s abc Fx tcbhighmathaufgabe_^ xsqrt+x^dd x substitutiony:+x^quad dd yxdd x frac_^ y^fracdd y tcbhighmathloesungtfrac+x^^/+c %t abc Fx tcbhighmathaufgabe fracx^x^+^dd x substitutiony:x^+quad dd yx^dd x frac y^-dd y tcbhighmathloesung-fracx^++c %u abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %v abc Fx tcbhighmathaufgabe_^ fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac_^ y^-fracdd y tcbhighmathloesungtfracsqrtx^++c abc Fx tcbhighmathaufgabe frac+x+^dd x substitutiony:x+quad dd ydd x frac frac+y^dd y tcbhighmathloesungtfracarctanx++c %x abc Fx tcbhighmathaufgabe_^fracln fracmathrm e^xmathrm e^x+dd x substitutiony:mathrm e^x+quad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!biglmathrm e^x+bigr+c abclist
Meta Information
Exercise:
nprvmulticols abclist %a abc displaystyle _^ x^ cosx^ ddx %b abc displaystyle _^ x texte^x^ ddx %c abc displaystyle _^ fracx + ddx %d abc displaystyle _^ fracxx^ + ddx %e abc displaystyle sinx + ddx %f abc displaystyle _^ fracxx^ + ^ ddx %g abc displaystyle fracx^x^ + ddx %h abc displaystyle fracsqrt - x ddx %i abc displaystyle x lnx^ + ddx abc displaystyle fracxsqrtx^ + ddx %k abc displaystyle _texte^texte^ fracx lnx ddx %l abc displaystyle _^fracpi fraccos^x ddx abc displaystyle x^ sqrtx^ + ddx abc displaystyle fracxx^ - ddx %o abc displaystyle _^ fracx + ^ ddx %p abc displaystyle _^fracln fractexte^x + texte^x ddx abc displaystyle tanx sec^x ddx abc displaystyle fracsqrtx - ddx %s abc displaystyle _^ x sqrt + x^ ddx %t abc displaystyle fracx^x^ + ^ ddx %u abc displaystyle fracsqrt - x ddx %v abc displaystyle _^ fracxsqrtx^ + ddx %w abc displaystyle frac + x + ^ ddx %x abc displaystyle _^frac ln fractexte^xtexte^x + ddx abclist nprvmulticols
Solution:
abclist %a abc Fx tcbhighmathaufgabe_^ x^cosx^ dd x substitutiony:x^quad dd yx^dd x _^ cosy dd y leftsinyright_^ sin-sin tcbhighmathloesungsin %b abc Fx tcbhighmathaufgabe_^ x mathrm e^x^dd x substitutiony:x^quad dd yxdd x frac_^ mathrm e^ydd y frac lefttexte^yright_^ tcbhighmathloesungfraclefttextright %c abc Fx tcbhighmathaufgabe_^ fracx+dd x substitutiony:x+quad dd ydd x frac_^ fracydd y frac leftlnyright_^ fracleftln -ln right tcbhighmathloesungfracln %d abc Fx tcbhighmathaufgabe_^ fracxx^+dd x substitutiony:x^+quad dd yxdd x _^ fracydd y leftlnyright_^ leftln-ln right tcbhighmathloesungln %e abc Fx tcbhighmathaufgabe sinx+dd x substitutiony:x+quad dd ydd x frac sinydd y -frac cosy + C tcbhighmathloesung-tfraccosx++C %f abc Fx tcbhighmathaufgabe_^ fracxx^+^dd x substitutiony:x^+quad dd yxdd x frac_^ y^-dd y fracleft-y^-right_^ fracleft-frac+fracright frac-frac tcbhighmathloesungfrac %g abc Fx tcbhighmathaufgabe fracx^x^+dd x substitutiony:x^+quad dd yx^dd x frac fracydd y frac lny + C tcbhighmathloesungtfracln|x^+|+c %h abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %i abc Fx tcbhighmathaufgabe xlnx^+dd x substitutiony:x^+quad dd yxdd x frac lnydd y fracbiglyln y-ybigr+c tcbhighmathloesungtfracbiglx^+lnx^+-x^+bigr+c %j abc Fx tcbhighmathaufgabe fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac y^-fracdd y tcbhighmathloesungsqrtx^++c %k abc Fx tcbhighmathaufgabe_texte^texte^ fracxln xdd xqquad x substitutiony:ln xquad dd yfracxdd x _^ fracydd y tcbhighmathloesungln|ln x|+c %l abc Für diese Aufgabe muss man die Ableitung des Tangens kennen tanrightarrowfraccos^. Fx tcbhighmathaufgabe_^fracpi fraccos^xdd x sec^xdd x substitutiony:xquad dd ydd x frac_^fracpi sec^ydd y tcbhighmathloesungtfractanx+c %m abc Fx tcbhighmathaufgabe x^sqrtx^+dd x substitutiony:x^+quad dd yx^dd x frac y^fracdd y tcbhighmathloesungtfracx^+^/+c %n abc Fx tcbhighmathaufgabe fracxx^-dd x substitutiony:x^-quad dd yxdd x frac fracydd y tcbhighmathloesungtfracln|x^-|+c %o abc Fx tcbhighmathaufgabe_^ fracx+^dd x substitutiony:x+quad dd ydd x frac_^ y^-dd y tcbhighmathloesung-fracx++c %p abc Fx tcbhighmathaufgabe_^frac ln fracmathrm e^x+mathrm e^xdd x substitutiony:+mathrm e^xquad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!bigl+mathrm e^xbigr+c %q abc Fx tcbhighmathaufgabe tanxsec^xdd x substitutiony:tan xquad dd ysec^ xdd x ydd y tcbhighmathloesungtfractan^x+c %r abc Fx tcbhighmathaufgabe fracsqrtx-dd x substitutiony:x-quad dd ydd x frac y^-fracdd y tcbhighmathloesungtfracsqrtx-+c %s abc Fx tcbhighmathaufgabe_^ xsqrt+x^dd x substitutiony:+x^quad dd yxdd x frac_^ y^fracdd y tcbhighmathloesungtfrac+x^^/+c %t abc Fx tcbhighmathaufgabe fracx^x^+^dd x substitutiony:x^+quad dd yx^dd x frac y^-dd y tcbhighmathloesung-fracx^++c %u abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %v abc Fx tcbhighmathaufgabe_^ fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac_^ y^-fracdd y tcbhighmathloesungtfracsqrtx^++c abc Fx tcbhighmathaufgabe frac+x+^dd x substitutiony:x+quad dd ydd x frac frac+y^dd y tcbhighmathloesungtfracarctanx++c %x abc Fx tcbhighmathaufgabe_^fracln fracmathrm e^xmathrm e^x+dd x substitutiony:mathrm e^x+quad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!biglmathrm e^x+bigr+c abclist
nprvmulticols abclist %a abc displaystyle _^ x^ cosx^ ddx %b abc displaystyle _^ x texte^x^ ddx %c abc displaystyle _^ fracx + ddx %d abc displaystyle _^ fracxx^ + ddx %e abc displaystyle sinx + ddx %f abc displaystyle _^ fracxx^ + ^ ddx %g abc displaystyle fracx^x^ + ddx %h abc displaystyle fracsqrt - x ddx %i abc displaystyle x lnx^ + ddx abc displaystyle fracxsqrtx^ + ddx %k abc displaystyle _texte^texte^ fracx lnx ddx %l abc displaystyle _^fracpi fraccos^x ddx abc displaystyle x^ sqrtx^ + ddx abc displaystyle fracxx^ - ddx %o abc displaystyle _^ fracx + ^ ddx %p abc displaystyle _^fracln fractexte^x + texte^x ddx abc displaystyle tanx sec^x ddx abc displaystyle fracsqrtx - ddx %s abc displaystyle _^ x sqrt + x^ ddx %t abc displaystyle fracx^x^ + ^ ddx %u abc displaystyle fracsqrt - x ddx %v abc displaystyle _^ fracxsqrtx^ + ddx %w abc displaystyle frac + x + ^ ddx %x abc displaystyle _^frac ln fractexte^xtexte^x + ddx abclist nprvmulticols
Solution:
abclist %a abc Fx tcbhighmathaufgabe_^ x^cosx^ dd x substitutiony:x^quad dd yx^dd x _^ cosy dd y leftsinyright_^ sin-sin tcbhighmathloesungsin %b abc Fx tcbhighmathaufgabe_^ x mathrm e^x^dd x substitutiony:x^quad dd yxdd x frac_^ mathrm e^ydd y frac lefttexte^yright_^ tcbhighmathloesungfraclefttextright %c abc Fx tcbhighmathaufgabe_^ fracx+dd x substitutiony:x+quad dd ydd x frac_^ fracydd y frac leftlnyright_^ fracleftln -ln right tcbhighmathloesungfracln %d abc Fx tcbhighmathaufgabe_^ fracxx^+dd x substitutiony:x^+quad dd yxdd x _^ fracydd y leftlnyright_^ leftln-ln right tcbhighmathloesungln %e abc Fx tcbhighmathaufgabe sinx+dd x substitutiony:x+quad dd ydd x frac sinydd y -frac cosy + C tcbhighmathloesung-tfraccosx++C %f abc Fx tcbhighmathaufgabe_^ fracxx^+^dd x substitutiony:x^+quad dd yxdd x frac_^ y^-dd y fracleft-y^-right_^ fracleft-frac+fracright frac-frac tcbhighmathloesungfrac %g abc Fx tcbhighmathaufgabe fracx^x^+dd x substitutiony:x^+quad dd yx^dd x frac fracydd y frac lny + C tcbhighmathloesungtfracln|x^+|+c %h abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %i abc Fx tcbhighmathaufgabe xlnx^+dd x substitutiony:x^+quad dd yxdd x frac lnydd y fracbiglyln y-ybigr+c tcbhighmathloesungtfracbiglx^+lnx^+-x^+bigr+c %j abc Fx tcbhighmathaufgabe fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac y^-fracdd y tcbhighmathloesungsqrtx^++c %k abc Fx tcbhighmathaufgabe_texte^texte^ fracxln xdd xqquad x substitutiony:ln xquad dd yfracxdd x _^ fracydd y tcbhighmathloesungln|ln x|+c %l abc Für diese Aufgabe muss man die Ableitung des Tangens kennen tanrightarrowfraccos^. Fx tcbhighmathaufgabe_^fracpi fraccos^xdd x sec^xdd x substitutiony:xquad dd ydd x frac_^fracpi sec^ydd y tcbhighmathloesungtfractanx+c %m abc Fx tcbhighmathaufgabe x^sqrtx^+dd x substitutiony:x^+quad dd yx^dd x frac y^fracdd y tcbhighmathloesungtfracx^+^/+c %n abc Fx tcbhighmathaufgabe fracxx^-dd x substitutiony:x^-quad dd yxdd x frac fracydd y tcbhighmathloesungtfracln|x^-|+c %o abc Fx tcbhighmathaufgabe_^ fracx+^dd x substitutiony:x+quad dd ydd x frac_^ y^-dd y tcbhighmathloesung-fracx++c %p abc Fx tcbhighmathaufgabe_^frac ln fracmathrm e^x+mathrm e^xdd x substitutiony:+mathrm e^xquad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!bigl+mathrm e^xbigr+c %q abc Fx tcbhighmathaufgabe tanxsec^xdd x substitutiony:tan xquad dd ysec^ xdd x ydd y tcbhighmathloesungtfractan^x+c %r abc Fx tcbhighmathaufgabe fracsqrtx-dd x substitutiony:x-quad dd ydd x frac y^-fracdd y tcbhighmathloesungtfracsqrtx-+c %s abc Fx tcbhighmathaufgabe_^ xsqrt+x^dd x substitutiony:+x^quad dd yxdd x frac_^ y^fracdd y tcbhighmathloesungtfrac+x^^/+c %t abc Fx tcbhighmathaufgabe fracx^x^+^dd x substitutiony:x^+quad dd yx^dd x frac y^-dd y tcbhighmathloesung-fracx^++c %u abc Fx tcbhighmathaufgabe fracsqrt-xdd x substitutiony:-xquad dd y-dd x -frac y^-fracdd y tcbhighmathloesung-sqrt-x+c %v abc Fx tcbhighmathaufgabe_^ fracxsqrtx^+dd x substitutiony:x^+quad dd yxdd x frac_^ y^-fracdd y tcbhighmathloesungtfracsqrtx^++c abc Fx tcbhighmathaufgabe frac+x+^dd x substitutiony:x+quad dd ydd x frac frac+y^dd y tcbhighmathloesungtfracarctanx++c %x abc Fx tcbhighmathaufgabe_^fracln fracmathrm e^xmathrm e^x+dd x substitutiony:mathrm e^x+quad dd ymathrm e^xdd x frac_^ fracydd y tcbhighmathloesungtfracln!biglmathrm e^x+bigr+c abclist
Contained in these collections:
-
Integrieren 2 by uz
-
Integralrechnung mit Substitution by TeXercises

