Partielle Integration
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
nprvmulticols abclist abc displaystyle x texte^x ddx abc displaystyle x sinx ddx abc displaystyle x cosx ddx abc displaystyle x lnx ddx abc displaystyle x^ texte^x ddx abc displaystyle x^ cosx ddx abc displaystyle x^ sinx ddx abc displaystyle x^ texte^x ddx abc displaystyle lnx ddx abc displaystyle x texte^x ddx abc displaystyle x lnx + ddx abc displaystyle x arctanx ddx abc displaystyle lnx texte^x ddx abc displaystyle x^ lnx ddx abc displaystyle lnx^ ddx abc displaystyle x cosx ddx abc displaystyle x^ texte^-x ddx abc displaystyle x texte^x ddx abc displaystyle lnx cosx ddx abc displaystyle x arcsinx ddx abc displaystyle x lnax ddx abc displaystyle x^ lnbx ddx abc displaystyle x tan^-x^ ddx abc displaystyle lnx lnx + ddx abclist nprvmulticols
Solution:
abclist abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracemathrme^x_v - underbrace_u'underbracemathrme^x_vddx x-mathrme^x + C abc underbracex_uunderbracesin x_v'ddx underbracex_uunderbrace-cos x_v - underbrace_u'underbrace-cos x_vddx -xcos x + sin x + C abc underbracex_uunderbracecos x_v'ddx underbracex_uunderbracesin x_v - underbrace_u'underbracesin x_vddx xsin x + cos x + C abc underbracex_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex_u'underbracemathrme^x_vddx x^-x+mathrme^x + C abc underbracex^_uunderbracecos x_v'ddx underbracex^_uunderbracesin x_v - underbracex_u'underbracesin x_vddx x^sin x + xcos x - sin x + C abc underbracex^_uunderbracesin x_v'ddx underbracex^_uunderbrace-cos x_v - underbracex_u'underbrace-cos x_vddx -x^cos x + xsin x + cos x + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex^_u'underbracemathrme^x_vddx x^-x^+x-mathrme^x + C abc underbrace_v'underbraceln x_uddx underbracex_vunderbraceln x_u - underbracetfracx_u'underbracex_vddx xln x - x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx fracx-mathrme^x + C abc underbracex_v'underbracelnx+_uddx underbracetfracx^_vunderbracelnx+_u - underbracetfracx+_u'underbracetfracx^_vddx fracx^lnx+ - fracx^ + fracx - fraclnx+ + C abc underbracex_v'underbracearctan x_uddx underbracetfracx^_vunderbracearctan x_u - underbracetfrac+x^_u'underbracetfracx^_vddx tfrac!bigx^+arctan x - xbig + C abc underbracemathrme^x_uunderbraceln x_v'ddx underbracemathrme^x_uunderbracexln x - x_v - underbracemathrme^x_u'underbraceln x - _v'ddx tfracmathrme^xbigxln x - x + big + C abc underbracex^_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbrace_v'underbraceln x^_uddx underbracex_vunderbraceln x^_u - underbracetfracln xx_u'underbracex_vddx xln x^ - xln x + x + C abc underbracex_uunderbracecosx_v'ddx underbracex_uunderbracetfracsinx_v - underbrace_u'underbracetfracsinx_vddx tfracxsinx + tfraccosx + C abc underbracex^_uunderbracemathrme^-x_v'ddx underbracex^_uunderbrace-mathrme^-x_v - underbracex_u'underbrace-mathrme^-x_vddx -x^+x+mathrme^-x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx tfracx-mathrme^x + C abc underbraceln x_uunderbracecos x_v'ddx underbraceln x_uunderbracesin x_v - underbracetfracx_u'underbracesin x_vddx ln xsin x - mathrmSix + C abc underbracex_v'underbracearcsin x_uddx underbracetfracx^_vunderbracearcsin x_u - underbracetfracsqrt-x^_u'underbracetfracx^_vddx frac!Bigxsqrt-x^ + x^-arcsin xBig + C abc underbracex_v'underbracelnax_uddx underbracetfracx^_vunderbracelnax_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnax - fracx^ + C abc underbracex^_v'underbracelnbx_uddx underbracetfracx^_vunderbracelnbx_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnbx - fracx^ + C abc underbracex_v'underbracearctanx^_uddx underbracetfracx^_vunderbracearctanx^_u - underbracetfracx+x^_u'underbracetfracx^_vddx fracx^arctanx^ - fracln+x^ + C abc underbracelnx+_v'underbraceln x_uddx underbracex+lnx+-x_vunderbraceln x_u - underbracetfracx_u'underbracex+lnx+-x_vddx ln xbigx+lnx+-xbig - bigx+lnx+-xbig - operatornameLi_-x + x + C abclist
nprvmulticols abclist abc displaystyle x texte^x ddx abc displaystyle x sinx ddx abc displaystyle x cosx ddx abc displaystyle x lnx ddx abc displaystyle x^ texte^x ddx abc displaystyle x^ cosx ddx abc displaystyle x^ sinx ddx abc displaystyle x^ texte^x ddx abc displaystyle lnx ddx abc displaystyle x texte^x ddx abc displaystyle x lnx + ddx abc displaystyle x arctanx ddx abc displaystyle lnx texte^x ddx abc displaystyle x^ lnx ddx abc displaystyle lnx^ ddx abc displaystyle x cosx ddx abc displaystyle x^ texte^-x ddx abc displaystyle x texte^x ddx abc displaystyle lnx cosx ddx abc displaystyle x arcsinx ddx abc displaystyle x lnax ddx abc displaystyle x^ lnbx ddx abc displaystyle x tan^-x^ ddx abc displaystyle lnx lnx + ddx abclist nprvmulticols
Solution:
abclist abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracemathrme^x_v - underbrace_u'underbracemathrme^x_vddx x-mathrme^x + C abc underbracex_uunderbracesin x_v'ddx underbracex_uunderbrace-cos x_v - underbrace_u'underbrace-cos x_vddx -xcos x + sin x + C abc underbracex_uunderbracecos x_v'ddx underbracex_uunderbracesin x_v - underbrace_u'underbracesin x_vddx xsin x + cos x + C abc underbracex_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex_u'underbracemathrme^x_vddx x^-x+mathrme^x + C abc underbracex^_uunderbracecos x_v'ddx underbracex^_uunderbracesin x_v - underbracex_u'underbracesin x_vddx x^sin x + xcos x - sin x + C abc underbracex^_uunderbracesin x_v'ddx underbracex^_uunderbrace-cos x_v - underbracex_u'underbrace-cos x_vddx -x^cos x + xsin x + cos x + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex^_u'underbracemathrme^x_vddx x^-x^+x-mathrme^x + C abc underbrace_v'underbraceln x_uddx underbracex_vunderbraceln x_u - underbracetfracx_u'underbracex_vddx xln x - x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx fracx-mathrme^x + C abc underbracex_v'underbracelnx+_uddx underbracetfracx^_vunderbracelnx+_u - underbracetfracx+_u'underbracetfracx^_vddx fracx^lnx+ - fracx^ + fracx - fraclnx+ + C abc underbracex_v'underbracearctan x_uddx underbracetfracx^_vunderbracearctan x_u - underbracetfrac+x^_u'underbracetfracx^_vddx tfrac!bigx^+arctan x - xbig + C abc underbracemathrme^x_uunderbraceln x_v'ddx underbracemathrme^x_uunderbracexln x - x_v - underbracemathrme^x_u'underbraceln x - _v'ddx tfracmathrme^xbigxln x - x + big + C abc underbracex^_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbrace_v'underbraceln x^_uddx underbracex_vunderbraceln x^_u - underbracetfracln xx_u'underbracex_vddx xln x^ - xln x + x + C abc underbracex_uunderbracecosx_v'ddx underbracex_uunderbracetfracsinx_v - underbrace_u'underbracetfracsinx_vddx tfracxsinx + tfraccosx + C abc underbracex^_uunderbracemathrme^-x_v'ddx underbracex^_uunderbrace-mathrme^-x_v - underbracex_u'underbrace-mathrme^-x_vddx -x^+x+mathrme^-x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx tfracx-mathrme^x + C abc underbraceln x_uunderbracecos x_v'ddx underbraceln x_uunderbracesin x_v - underbracetfracx_u'underbracesin x_vddx ln xsin x - mathrmSix + C abc underbracex_v'underbracearcsin x_uddx underbracetfracx^_vunderbracearcsin x_u - underbracetfracsqrt-x^_u'underbracetfracx^_vddx frac!Bigxsqrt-x^ + x^-arcsin xBig + C abc underbracex_v'underbracelnax_uddx underbracetfracx^_vunderbracelnax_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnax - fracx^ + C abc underbracex^_v'underbracelnbx_uddx underbracetfracx^_vunderbracelnbx_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnbx - fracx^ + C abc underbracex_v'underbracearctanx^_uddx underbracetfracx^_vunderbracearctanx^_u - underbracetfracx+x^_u'underbracetfracx^_vddx fracx^arctanx^ - fracln+x^ + C abc underbracelnx+_v'underbraceln x_uddx underbracex+lnx+-x_vunderbraceln x_u - underbracetfracx_u'underbracex+lnx+-x_vddx ln xbigx+lnx+-xbig - bigx+lnx+-xbig - operatornameLi_-x + x + C abclist
Meta Information
Exercise:
nprvmulticols abclist abc displaystyle x texte^x ddx abc displaystyle x sinx ddx abc displaystyle x cosx ddx abc displaystyle x lnx ddx abc displaystyle x^ texte^x ddx abc displaystyle x^ cosx ddx abc displaystyle x^ sinx ddx abc displaystyle x^ texte^x ddx abc displaystyle lnx ddx abc displaystyle x texte^x ddx abc displaystyle x lnx + ddx abc displaystyle x arctanx ddx abc displaystyle lnx texte^x ddx abc displaystyle x^ lnx ddx abc displaystyle lnx^ ddx abc displaystyle x cosx ddx abc displaystyle x^ texte^-x ddx abc displaystyle x texte^x ddx abc displaystyle lnx cosx ddx abc displaystyle x arcsinx ddx abc displaystyle x lnax ddx abc displaystyle x^ lnbx ddx abc displaystyle x tan^-x^ ddx abc displaystyle lnx lnx + ddx abclist nprvmulticols
Solution:
abclist abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracemathrme^x_v - underbrace_u'underbracemathrme^x_vddx x-mathrme^x + C abc underbracex_uunderbracesin x_v'ddx underbracex_uunderbrace-cos x_v - underbrace_u'underbrace-cos x_vddx -xcos x + sin x + C abc underbracex_uunderbracecos x_v'ddx underbracex_uunderbracesin x_v - underbrace_u'underbracesin x_vddx xsin x + cos x + C abc underbracex_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex_u'underbracemathrme^x_vddx x^-x+mathrme^x + C abc underbracex^_uunderbracecos x_v'ddx underbracex^_uunderbracesin x_v - underbracex_u'underbracesin x_vddx x^sin x + xcos x - sin x + C abc underbracex^_uunderbracesin x_v'ddx underbracex^_uunderbrace-cos x_v - underbracex_u'underbrace-cos x_vddx -x^cos x + xsin x + cos x + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex^_u'underbracemathrme^x_vddx x^-x^+x-mathrme^x + C abc underbrace_v'underbraceln x_uddx underbracex_vunderbraceln x_u - underbracetfracx_u'underbracex_vddx xln x - x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx fracx-mathrme^x + C abc underbracex_v'underbracelnx+_uddx underbracetfracx^_vunderbracelnx+_u - underbracetfracx+_u'underbracetfracx^_vddx fracx^lnx+ - fracx^ + fracx - fraclnx+ + C abc underbracex_v'underbracearctan x_uddx underbracetfracx^_vunderbracearctan x_u - underbracetfrac+x^_u'underbracetfracx^_vddx tfrac!bigx^+arctan x - xbig + C abc underbracemathrme^x_uunderbraceln x_v'ddx underbracemathrme^x_uunderbracexln x - x_v - underbracemathrme^x_u'underbraceln x - _v'ddx tfracmathrme^xbigxln x - x + big + C abc underbracex^_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbrace_v'underbraceln x^_uddx underbracex_vunderbraceln x^_u - underbracetfracln xx_u'underbracex_vddx xln x^ - xln x + x + C abc underbracex_uunderbracecosx_v'ddx underbracex_uunderbracetfracsinx_v - underbrace_u'underbracetfracsinx_vddx tfracxsinx + tfraccosx + C abc underbracex^_uunderbracemathrme^-x_v'ddx underbracex^_uunderbrace-mathrme^-x_v - underbracex_u'underbrace-mathrme^-x_vddx -x^+x+mathrme^-x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx tfracx-mathrme^x + C abc underbraceln x_uunderbracecos x_v'ddx underbraceln x_uunderbracesin x_v - underbracetfracx_u'underbracesin x_vddx ln xsin x - mathrmSix + C abc underbracex_v'underbracearcsin x_uddx underbracetfracx^_vunderbracearcsin x_u - underbracetfracsqrt-x^_u'underbracetfracx^_vddx frac!Bigxsqrt-x^ + x^-arcsin xBig + C abc underbracex_v'underbracelnax_uddx underbracetfracx^_vunderbracelnax_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnax - fracx^ + C abc underbracex^_v'underbracelnbx_uddx underbracetfracx^_vunderbracelnbx_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnbx - fracx^ + C abc underbracex_v'underbracearctanx^_uddx underbracetfracx^_vunderbracearctanx^_u - underbracetfracx+x^_u'underbracetfracx^_vddx fracx^arctanx^ - fracln+x^ + C abc underbracelnx+_v'underbraceln x_uddx underbracex+lnx+-x_vunderbraceln x_u - underbracetfracx_u'underbracex+lnx+-x_vddx ln xbigx+lnx+-xbig - bigx+lnx+-xbig - operatornameLi_-x + x + C abclist
nprvmulticols abclist abc displaystyle x texte^x ddx abc displaystyle x sinx ddx abc displaystyle x cosx ddx abc displaystyle x lnx ddx abc displaystyle x^ texte^x ddx abc displaystyle x^ cosx ddx abc displaystyle x^ sinx ddx abc displaystyle x^ texte^x ddx abc displaystyle lnx ddx abc displaystyle x texte^x ddx abc displaystyle x lnx + ddx abc displaystyle x arctanx ddx abc displaystyle lnx texte^x ddx abc displaystyle x^ lnx ddx abc displaystyle lnx^ ddx abc displaystyle x cosx ddx abc displaystyle x^ texte^-x ddx abc displaystyle x texte^x ddx abc displaystyle lnx cosx ddx abc displaystyle x arcsinx ddx abc displaystyle x lnax ddx abc displaystyle x^ lnbx ddx abc displaystyle x tan^-x^ ddx abc displaystyle lnx lnx + ddx abclist nprvmulticols
Solution:
abclist abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracemathrme^x_v - underbrace_u'underbracemathrme^x_vddx x-mathrme^x + C abc underbracex_uunderbracesin x_v'ddx underbracex_uunderbrace-cos x_v - underbrace_u'underbrace-cos x_vddx -xcos x + sin x + C abc underbracex_uunderbracecos x_v'ddx underbracex_uunderbracesin x_v - underbrace_u'underbracesin x_vddx xsin x + cos x + C abc underbracex_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex_u'underbracemathrme^x_vddx x^-x+mathrme^x + C abc underbracex^_uunderbracecos x_v'ddx underbracex^_uunderbracesin x_v - underbracex_u'underbracesin x_vddx x^sin x + xcos x - sin x + C abc underbracex^_uunderbracesin x_v'ddx underbracex^_uunderbrace-cos x_v - underbracex_u'underbrace-cos x_vddx -x^cos x + xsin x + cos x + C abc underbracex^_uunderbracemathrme^x_v'ddx underbracex^_uunderbracemathrme^x_v - underbracex^_u'underbracemathrme^x_vddx x^-x^+x-mathrme^x + C abc underbrace_v'underbraceln x_uddx underbracex_vunderbraceln x_u - underbracetfracx_u'underbracex_vddx xln x - x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx fracx-mathrme^x + C abc underbracex_v'underbracelnx+_uddx underbracetfracx^_vunderbracelnx+_u - underbracetfracx+_u'underbracetfracx^_vddx fracx^lnx+ - fracx^ + fracx - fraclnx+ + C abc underbracex_v'underbracearctan x_uddx underbracetfracx^_vunderbracearctan x_u - underbracetfrac+x^_u'underbracetfracx^_vddx tfrac!bigx^+arctan x - xbig + C abc underbracemathrme^x_uunderbraceln x_v'ddx underbracemathrme^x_uunderbracexln x - x_v - underbracemathrme^x_u'underbraceln x - _v'ddx tfracmathrme^xbigxln x - x + big + C abc underbracex^_v'underbraceln x_uddx underbracetfracx^_vunderbraceln x_u - underbracetfracx_u'underbracetfracx^_vddx fracx^ln x - fracx^ + C abc underbrace_v'underbraceln x^_uddx underbracex_vunderbraceln x^_u - underbracetfracln xx_u'underbracex_vddx xln x^ - xln x + x + C abc underbracex_uunderbracecosx_v'ddx underbracex_uunderbracetfracsinx_v - underbrace_u'underbracetfracsinx_vddx tfracxsinx + tfraccosx + C abc underbracex^_uunderbracemathrme^-x_v'ddx underbracex^_uunderbrace-mathrme^-x_v - underbracex_u'underbrace-mathrme^-x_vddx -x^+x+mathrme^-x + C abc underbracex_uunderbracemathrme^x_v'ddx underbracex_uunderbracetfracmathrme^x_v - underbrace_u'underbracetfracmathrme^x_vddx tfracx-mathrme^x + C abc underbraceln x_uunderbracecos x_v'ddx underbraceln x_uunderbracesin x_v - underbracetfracx_u'underbracesin x_vddx ln xsin x - mathrmSix + C abc underbracex_v'underbracearcsin x_uddx underbracetfracx^_vunderbracearcsin x_u - underbracetfracsqrt-x^_u'underbracetfracx^_vddx frac!Bigxsqrt-x^ + x^-arcsin xBig + C abc underbracex_v'underbracelnax_uddx underbracetfracx^_vunderbracelnax_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnax - fracx^ + C abc underbracex^_v'underbracelnbx_uddx underbracetfracx^_vunderbracelnbx_u - underbracetfracx_u'underbracetfracx^_vddx fracx^lnbx - fracx^ + C abc underbracex_v'underbracearctanx^_uddx underbracetfracx^_vunderbracearctanx^_u - underbracetfracx+x^_u'underbracetfracx^_vddx fracx^arctanx^ - fracln+x^ + C abc underbracelnx+_v'underbraceln x_uddx underbracex+lnx+-x_vunderbraceln x_u - underbracetfracx_u'underbracex+lnx+-x_vddx ln xbigx+lnx+-xbig - bigx+lnx+-xbig - operatornameLi_-x + x + C abclist
Contained in these collections:
-
Integrieren 2 by uz
-
Integralrechnung mit partieller Integration by TeXercises

