Kügelchen am Seidenfaden
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Zwei kleine Kügelchen gleicher Masse werden an zwei cm langen isolieren Seidenfäden am selben Punkt aufgehängt und mit .nC aufgeladen wodurch sie cm auseinander getrieben werden. Wie gross ist die Masse eines Kügelchens?
Solution:
newqtylm newqtyq.C newqtyrm % Die ausgelenkten Fäden bilden die Schenkel eines gleichschenkligen Dreiecks deren Basis der Abstand der Kügelchen ist. Für die Höhe dieses Dreiecks gilt dann solqtyhsqrtell^ - qtyfracr^sqrtln**-rn/**m al h hf sqrtqtyl^ - qtyfracr^ hTTTT. Die vertikale Komponente der Fadenkraft muss gerade die Gewichtskraft kompensieren deshalb gilt FG FZ cosalpha wobei alpha der Winkel zwischen Schenkel und Höhe ist. Der horizontale Komponente wirkt der Coulomb-Kraft entgegen deshalb gilt FC FZ sinalpha FG tanalpha. Wir ersetzen die letzte Gleichung durch die bekannten Formeln und lösen nach der Masse auf: solqtym frachq^piepsilon_gr^*hn*qn**/*pi*ncepsn*gMn*rn***g al fracpiepsilon_ fracq^r^ mg fracrh m mf frac h qtyq^pi nceps gM qtyr^ mTT
Zwei kleine Kügelchen gleicher Masse werden an zwei cm langen isolieren Seidenfäden am selben Punkt aufgehängt und mit .nC aufgeladen wodurch sie cm auseinander getrieben werden. Wie gross ist die Masse eines Kügelchens?
Solution:
newqtylm newqtyq.C newqtyrm % Die ausgelenkten Fäden bilden die Schenkel eines gleichschenkligen Dreiecks deren Basis der Abstand der Kügelchen ist. Für die Höhe dieses Dreiecks gilt dann solqtyhsqrtell^ - qtyfracr^sqrtln**-rn/**m al h hf sqrtqtyl^ - qtyfracr^ hTTTT. Die vertikale Komponente der Fadenkraft muss gerade die Gewichtskraft kompensieren deshalb gilt FG FZ cosalpha wobei alpha der Winkel zwischen Schenkel und Höhe ist. Der horizontale Komponente wirkt der Coulomb-Kraft entgegen deshalb gilt FC FZ sinalpha FG tanalpha. Wir ersetzen die letzte Gleichung durch die bekannten Formeln und lösen nach der Masse auf: solqtym frachq^piepsilon_gr^*hn*qn**/*pi*ncepsn*gMn*rn***g al fracpiepsilon_ fracq^r^ mg fracrh m mf frac h qtyq^pi nceps gM qtyr^ mTT
Meta Information
Exercise:
Zwei kleine Kügelchen gleicher Masse werden an zwei cm langen isolieren Seidenfäden am selben Punkt aufgehängt und mit .nC aufgeladen wodurch sie cm auseinander getrieben werden. Wie gross ist die Masse eines Kügelchens?
Solution:
newqtylm newqtyq.C newqtyrm % Die ausgelenkten Fäden bilden die Schenkel eines gleichschenkligen Dreiecks deren Basis der Abstand der Kügelchen ist. Für die Höhe dieses Dreiecks gilt dann solqtyhsqrtell^ - qtyfracr^sqrtln**-rn/**m al h hf sqrtqtyl^ - qtyfracr^ hTTTT. Die vertikale Komponente der Fadenkraft muss gerade die Gewichtskraft kompensieren deshalb gilt FG FZ cosalpha wobei alpha der Winkel zwischen Schenkel und Höhe ist. Der horizontale Komponente wirkt der Coulomb-Kraft entgegen deshalb gilt FC FZ sinalpha FG tanalpha. Wir ersetzen die letzte Gleichung durch die bekannten Formeln und lösen nach der Masse auf: solqtym frachq^piepsilon_gr^*hn*qn**/*pi*ncepsn*gMn*rn***g al fracpiepsilon_ fracq^r^ mg fracrh m mf frac h qtyq^pi nceps gM qtyr^ mTT
Zwei kleine Kügelchen gleicher Masse werden an zwei cm langen isolieren Seidenfäden am selben Punkt aufgehängt und mit .nC aufgeladen wodurch sie cm auseinander getrieben werden. Wie gross ist die Masse eines Kügelchens?
Solution:
newqtylm newqtyq.C newqtyrm % Die ausgelenkten Fäden bilden die Schenkel eines gleichschenkligen Dreiecks deren Basis der Abstand der Kügelchen ist. Für die Höhe dieses Dreiecks gilt dann solqtyhsqrtell^ - qtyfracr^sqrtln**-rn/**m al h hf sqrtqtyl^ - qtyfracr^ hTTTT. Die vertikale Komponente der Fadenkraft muss gerade die Gewichtskraft kompensieren deshalb gilt FG FZ cosalpha wobei alpha der Winkel zwischen Schenkel und Höhe ist. Der horizontale Komponente wirkt der Coulomb-Kraft entgegen deshalb gilt FC FZ sinalpha FG tanalpha. Wir ersetzen die letzte Gleichung durch die bekannten Formeln und lösen nach der Masse auf: solqtym frachq^piepsilon_gr^*hn*qn**/*pi*ncepsn*gMn*rn***g al fracpiepsilon_ fracq^r^ mg fracrh m mf frac h qtyq^pi nceps gM qtyr^ mTT
Contained in these collections:
-
Aufgehängtes geladenes Kügelchen by TeXercises