Kugelskulptur in Rotation versetzen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die folg abgebildete Skulptur besteht aus drei Kugeln dürfen als punktförmige Körper angesehen werden die durch masselose Verbindungsstangen mit einer Drehachse verbunden sind. Die Abstände der Kugeln zu dieser Drehachse betragen raO rbO und rcO ihre Massen ebenfalls in mathematisch positiver Orientierung seien maO mbO und mcO. Wie stark Winkelbeschleunigung wird das Gebilde in Rotation versetzt falls an der leichtesten Kugel rechtwinklig zu ihrem Abstand zur Drehachse FO Kraft wirken? center tikzpicturescale drawfillblack circle .cm; drawcolorblustealth . arc ::.; drawdashed --+:.; drawdashed --+:.; drawdashed --+:.; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; coordinate C at :. ; draw- stealth colorred C--C+:. nodemidway below F; tikzpicture center
Solution:
Die enquoteKugelskulptur hat bezüglich der angegebenen Drehachse J _i^ m_ir_i^ m_r_^+m_r_^+m_r_^ ma qtyra^ +mb qtyrb^ +mc qtyrc^ J approx JS JP Trägheitsmoment. Das wirke Drehmoment beträgt M r_F rc F M womit das Gebilde alpha fracMJ fracr_F_i^ m_ir_i^ fracr_Fm_r_^+m_r_^+m_r_^ fracMJ a approx aS aP Winkelbeschleunigung erfährt. alpha fracr_F_i^ m_ir_i^ aS aP
Die folg abgebildete Skulptur besteht aus drei Kugeln dürfen als punktförmige Körper angesehen werden die durch masselose Verbindungsstangen mit einer Drehachse verbunden sind. Die Abstände der Kugeln zu dieser Drehachse betragen raO rbO und rcO ihre Massen ebenfalls in mathematisch positiver Orientierung seien maO mbO und mcO. Wie stark Winkelbeschleunigung wird das Gebilde in Rotation versetzt falls an der leichtesten Kugel rechtwinklig zu ihrem Abstand zur Drehachse FO Kraft wirken? center tikzpicturescale drawfillblack circle .cm; drawcolorblustealth . arc ::.; drawdashed --+:.; drawdashed --+:.; drawdashed --+:.; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; coordinate C at :. ; draw- stealth colorred C--C+:. nodemidway below F; tikzpicture center
Solution:
Die enquoteKugelskulptur hat bezüglich der angegebenen Drehachse J _i^ m_ir_i^ m_r_^+m_r_^+m_r_^ ma qtyra^ +mb qtyrb^ +mc qtyrc^ J approx JS JP Trägheitsmoment. Das wirke Drehmoment beträgt M r_F rc F M womit das Gebilde alpha fracMJ fracr_F_i^ m_ir_i^ fracr_Fm_r_^+m_r_^+m_r_^ fracMJ a approx aS aP Winkelbeschleunigung erfährt. alpha fracr_F_i^ m_ir_i^ aS aP
Meta Information
Exercise:
Die folg abgebildete Skulptur besteht aus drei Kugeln dürfen als punktförmige Körper angesehen werden die durch masselose Verbindungsstangen mit einer Drehachse verbunden sind. Die Abstände der Kugeln zu dieser Drehachse betragen raO rbO und rcO ihre Massen ebenfalls in mathematisch positiver Orientierung seien maO mbO und mcO. Wie stark Winkelbeschleunigung wird das Gebilde in Rotation versetzt falls an der leichtesten Kugel rechtwinklig zu ihrem Abstand zur Drehachse FO Kraft wirken? center tikzpicturescale drawfillblack circle .cm; drawcolorblustealth . arc ::.; drawdashed --+:.; drawdashed --+:.; drawdashed --+:.; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; coordinate C at :. ; draw- stealth colorred C--C+:. nodemidway below F; tikzpicture center
Solution:
Die enquoteKugelskulptur hat bezüglich der angegebenen Drehachse J _i^ m_ir_i^ m_r_^+m_r_^+m_r_^ ma qtyra^ +mb qtyrb^ +mc qtyrc^ J approx JS JP Trägheitsmoment. Das wirke Drehmoment beträgt M r_F rc F M womit das Gebilde alpha fracMJ fracr_F_i^ m_ir_i^ fracr_Fm_r_^+m_r_^+m_r_^ fracMJ a approx aS aP Winkelbeschleunigung erfährt. alpha fracr_F_i^ m_ir_i^ aS aP
Die folg abgebildete Skulptur besteht aus drei Kugeln dürfen als punktförmige Körper angesehen werden die durch masselose Verbindungsstangen mit einer Drehachse verbunden sind. Die Abstände der Kugeln zu dieser Drehachse betragen raO rbO und rcO ihre Massen ebenfalls in mathematisch positiver Orientierung seien maO mbO und mcO. Wie stark Winkelbeschleunigung wird das Gebilde in Rotation versetzt falls an der leichtesten Kugel rechtwinklig zu ihrem Abstand zur Drehachse FO Kraft wirken? center tikzpicturescale drawfillblack circle .cm; drawcolorblustealth . arc ::.; drawdashed --+:.; drawdashed --+:.; drawdashed --+:.; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; drawfillblack ++:. circle .cm; coordinate C at :. ; draw- stealth colorred C--C+:. nodemidway below F; tikzpicture center
Solution:
Die enquoteKugelskulptur hat bezüglich der angegebenen Drehachse J _i^ m_ir_i^ m_r_^+m_r_^+m_r_^ ma qtyra^ +mb qtyrb^ +mc qtyrc^ J approx JS JP Trägheitsmoment. Das wirke Drehmoment beträgt M r_F rc F M womit das Gebilde alpha fracMJ fracr_F_i^ m_ir_i^ fracr_Fm_r_^+m_r_^+m_r_^ fracMJ a approx aS aP Winkelbeschleunigung erfährt. alpha fracr_F_i^ m_ir_i^ aS aP
Contained in these collections:
-
Dynamik der Rotation 1 by uz
Asked Quantity:
Winkelbeschleunigung \(\alpha\)
in
Radiant pro Sekunde pro Sekunde \(\rm \frac{rad}{s^2}\)
Physical Quantity
Veränderung der Winkelgeschwindigkeit pro Zeit
Unit
Radiant pro Sekunde pro Sekunde (\(\rm \frac{rad}{s^2}\))
Base?
SI?
Metric?
Coherent?
Imperial?