Massenverhältnis zweier Leiter
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die Widerstände zweier Leiter mit kreisförmigen Querschnitt gleicher Länge und aus gleichem Material verhalten sich wie :. In welchem Verhältnis stehen die Massen der beiden Leiter?
Solution:
Gleiches Material und gleiche Länge bedeutet dass bei den beiden rhoel und ell identisch ist. Das Massenverhältnis der beiden Leiter beträgt al fracm_m_ fracrho V_rho V_ fracV_V_ fracA_ ellA_ ell fracA_A_ fracrhoel fracellR_rhoel fracellR_ fracR_R_ fracnR_R_ n . Das heisst m_ m_ oder: Der Leiter mit dem kleinen Widerstand Leiter hat eine doppelt so grosse Masse wie der Leiter mit dem grossen Widerstand Leiter .
Die Widerstände zweier Leiter mit kreisförmigen Querschnitt gleicher Länge und aus gleichem Material verhalten sich wie :. In welchem Verhältnis stehen die Massen der beiden Leiter?
Solution:
Gleiches Material und gleiche Länge bedeutet dass bei den beiden rhoel und ell identisch ist. Das Massenverhältnis der beiden Leiter beträgt al fracm_m_ fracrho V_rho V_ fracV_V_ fracA_ ellA_ ell fracA_A_ fracrhoel fracellR_rhoel fracellR_ fracR_R_ fracnR_R_ n . Das heisst m_ m_ oder: Der Leiter mit dem kleinen Widerstand Leiter hat eine doppelt so grosse Masse wie der Leiter mit dem grossen Widerstand Leiter .
Meta Information
Exercise:
Die Widerstände zweier Leiter mit kreisförmigen Querschnitt gleicher Länge und aus gleichem Material verhalten sich wie :. In welchem Verhältnis stehen die Massen der beiden Leiter?
Solution:
Gleiches Material und gleiche Länge bedeutet dass bei den beiden rhoel und ell identisch ist. Das Massenverhältnis der beiden Leiter beträgt al fracm_m_ fracrho V_rho V_ fracV_V_ fracA_ ellA_ ell fracA_A_ fracrhoel fracellR_rhoel fracellR_ fracR_R_ fracnR_R_ n . Das heisst m_ m_ oder: Der Leiter mit dem kleinen Widerstand Leiter hat eine doppelt so grosse Masse wie der Leiter mit dem grossen Widerstand Leiter .
Die Widerstände zweier Leiter mit kreisförmigen Querschnitt gleicher Länge und aus gleichem Material verhalten sich wie :. In welchem Verhältnis stehen die Massen der beiden Leiter?
Solution:
Gleiches Material und gleiche Länge bedeutet dass bei den beiden rhoel und ell identisch ist. Das Massenverhältnis der beiden Leiter beträgt al fracm_m_ fracrho V_rho V_ fracV_V_ fracA_ ellA_ ell fracA_A_ fracrhoel fracellR_rhoel fracellR_ fracR_R_ fracnR_R_ n . Das heisst m_ m_ oder: Der Leiter mit dem kleinen Widerstand Leiter hat eine doppelt so grosse Masse wie der Leiter mit dem grossen Widerstand Leiter .
Contained in these collections:
-
Widerstand eines Leiters by uz
-
Widerstand by pw
-
Widerstand eines Leiters by pw
-
Spezifischer Widerstand by aej