Quader aus Buchenholz
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Exercise:
Wie viel Kraft muss man aufwen um einen Buchenholz-Quader rO mit den Abmassen aO times bO times cO unter Wasser zu halten?
Solution:
Geg a aO a b bO b b cO c rho r GesKraftF siN Der Buchenholz-Quader hat V abc a b c V Volumen und damit m rho V rho abc r V m Masse bzw. auf der Erde sscFG mg rho g abc m ncg Fg Gewichtskraft. Wird er vollständig unter Wasser getaucht so wird genau gleich viel Wasser verdrängt wie er selbst Volumen hat weshalb er also sscFA sscrhoW V g sscrhoW abc g R V ncg Fa Auftriebskraft erfährt. Man müsste also zusätzlich zur Gewichtskraft mit F sscFA - sscFG sscrhoW g abc - rho g abc gsscrhoW-rhoabc Fa - Fg F approx FS FP auf den Klotz drücken um ihn unter Wasser zu halten. F gsscrhoW-rhoabc FS FP
Wie viel Kraft muss man aufwen um einen Buchenholz-Quader rO mit den Abmassen aO times bO times cO unter Wasser zu halten?
Solution:
Geg a aO a b bO b b cO c rho r GesKraftF siN Der Buchenholz-Quader hat V abc a b c V Volumen und damit m rho V rho abc r V m Masse bzw. auf der Erde sscFG mg rho g abc m ncg Fg Gewichtskraft. Wird er vollständig unter Wasser getaucht so wird genau gleich viel Wasser verdrängt wie er selbst Volumen hat weshalb er also sscFA sscrhoW V g sscrhoW abc g R V ncg Fa Auftriebskraft erfährt. Man müsste also zusätzlich zur Gewichtskraft mit F sscFA - sscFG sscrhoW g abc - rho g abc gsscrhoW-rhoabc Fa - Fg F approx FS FP auf den Klotz drücken um ihn unter Wasser zu halten. F gsscrhoW-rhoabc FS FP
Meta Information
Exercise:
Wie viel Kraft muss man aufwen um einen Buchenholz-Quader rO mit den Abmassen aO times bO times cO unter Wasser zu halten?
Solution:
Geg a aO a b bO b b cO c rho r GesKraftF siN Der Buchenholz-Quader hat V abc a b c V Volumen und damit m rho V rho abc r V m Masse bzw. auf der Erde sscFG mg rho g abc m ncg Fg Gewichtskraft. Wird er vollständig unter Wasser getaucht so wird genau gleich viel Wasser verdrängt wie er selbst Volumen hat weshalb er also sscFA sscrhoW V g sscrhoW abc g R V ncg Fa Auftriebskraft erfährt. Man müsste also zusätzlich zur Gewichtskraft mit F sscFA - sscFG sscrhoW g abc - rho g abc gsscrhoW-rhoabc Fa - Fg F approx FS FP auf den Klotz drücken um ihn unter Wasser zu halten. F gsscrhoW-rhoabc FS FP
Wie viel Kraft muss man aufwen um einen Buchenholz-Quader rO mit den Abmassen aO times bO times cO unter Wasser zu halten?
Solution:
Geg a aO a b bO b b cO c rho r GesKraftF siN Der Buchenholz-Quader hat V abc a b c V Volumen und damit m rho V rho abc r V m Masse bzw. auf der Erde sscFG mg rho g abc m ncg Fg Gewichtskraft. Wird er vollständig unter Wasser getaucht so wird genau gleich viel Wasser verdrängt wie er selbst Volumen hat weshalb er also sscFA sscrhoW V g sscrhoW abc g R V ncg Fa Auftriebskraft erfährt. Man müsste also zusätzlich zur Gewichtskraft mit F sscFA - sscFG sscrhoW g abc - rho g abc gsscrhoW-rhoabc Fa - Fg F approx FS FP auf den Klotz drücken um ihn unter Wasser zu halten. F gsscrhoW-rhoabc FS FP
Contained in these collections:
-
Auftrieb by uz
-
Unter Wasser drücken by TeXercises
-
Auftrieb by pw
Asked Quantity:
Kraft \(F\)
in
Newton \(\rm N\)
Physical Quantity
Kraft \(F\)
Einfluss, der Körper verformt oder beschleunigt
Masse mal Beschleunigung
Unit
Newton (\(\rm N\))
Base?
SI?
Metric?
Coherent?
Imperial?