Raumstation ISS
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die Umlaufzeit der ernationalen Raumstation ISS um die Erde beträgt etwa min. abcliste abc In welcher Höhe über der Erdoberfläche etwa bewegt sich die Raumstation? abc Mit welcher Geschwindigkeit bewegt sich die Raumstation relativ zur Erde? abcliste
Solution:
newqtyTIomin newqtyTIs newqtyrEem newqtyrM.em newqtyTM.es % GegsscTISS TIo TI % Das dritte Kepler'sche Gesetz schafft eine Beziehung zwischen zwei verschiedenen Körpern welche um denselben dritten Körper kreisen. Wir müssen also -- nebst der Raumstation ISS -- einen weiteren Körper finden welcher um die Erde kreist. Das ist nicht schwieirig: Der Mond kreist um die Erde wir kennen den Radius seiner Kreisbahn sowie seine Umlaufzeit. Damit können die folgen zwei Teilaufgaben gelöst werden: abcliste abc GesHöheh sim Der Radius der Kreisbahn der ISS beträgt solqtyrIsqrtfracsscTISS^T^_MoonIndex r_MoonIndexTIn**/TMn**^/*rMnm al sscrISS rIf sqrtfracqtyTI^qtyTM^ rM rI. Um den Abstand der ISS zur Erdoberfläche zu erhalten müssen wir noch den Radius der Erde abziehen: solqtyhrIf - r_EarthIndexrIn-rEnm h sscrISS - r_EarthIndex hf rI - rE h. % h hf hII abc GesGeschwindigkeitv si % Die Geschwindigkeit der ISS beträgt solqtywfracpiT*pi/TInrps solqtyvrIf omegarIn*wn sscvISS vf rIw v. % v vf vII abcliste
Die Umlaufzeit der ernationalen Raumstation ISS um die Erde beträgt etwa min. abcliste abc In welcher Höhe über der Erdoberfläche etwa bewegt sich die Raumstation? abc Mit welcher Geschwindigkeit bewegt sich die Raumstation relativ zur Erde? abcliste
Solution:
newqtyTIomin newqtyTIs newqtyrEem newqtyrM.em newqtyTM.es % GegsscTISS TIo TI % Das dritte Kepler'sche Gesetz schafft eine Beziehung zwischen zwei verschiedenen Körpern welche um denselben dritten Körper kreisen. Wir müssen also -- nebst der Raumstation ISS -- einen weiteren Körper finden welcher um die Erde kreist. Das ist nicht schwieirig: Der Mond kreist um die Erde wir kennen den Radius seiner Kreisbahn sowie seine Umlaufzeit. Damit können die folgen zwei Teilaufgaben gelöst werden: abcliste abc GesHöheh sim Der Radius der Kreisbahn der ISS beträgt solqtyrIsqrtfracsscTISS^T^_MoonIndex r_MoonIndexTIn**/TMn**^/*rMnm al sscrISS rIf sqrtfracqtyTI^qtyTM^ rM rI. Um den Abstand der ISS zur Erdoberfläche zu erhalten müssen wir noch den Radius der Erde abziehen: solqtyhrIf - r_EarthIndexrIn-rEnm h sscrISS - r_EarthIndex hf rI - rE h. % h hf hII abc GesGeschwindigkeitv si % Die Geschwindigkeit der ISS beträgt solqtywfracpiT*pi/TInrps solqtyvrIf omegarIn*wn sscvISS vf rIw v. % v vf vII abcliste
Meta Information
Exercise:
Die Umlaufzeit der ernationalen Raumstation ISS um die Erde beträgt etwa min. abcliste abc In welcher Höhe über der Erdoberfläche etwa bewegt sich die Raumstation? abc Mit welcher Geschwindigkeit bewegt sich die Raumstation relativ zur Erde? abcliste
Solution:
newqtyTIomin newqtyTIs newqtyrEem newqtyrM.em newqtyTM.es % GegsscTISS TIo TI % Das dritte Kepler'sche Gesetz schafft eine Beziehung zwischen zwei verschiedenen Körpern welche um denselben dritten Körper kreisen. Wir müssen also -- nebst der Raumstation ISS -- einen weiteren Körper finden welcher um die Erde kreist. Das ist nicht schwieirig: Der Mond kreist um die Erde wir kennen den Radius seiner Kreisbahn sowie seine Umlaufzeit. Damit können die folgen zwei Teilaufgaben gelöst werden: abcliste abc GesHöheh sim Der Radius der Kreisbahn der ISS beträgt solqtyrIsqrtfracsscTISS^T^_MoonIndex r_MoonIndexTIn**/TMn**^/*rMnm al sscrISS rIf sqrtfracqtyTI^qtyTM^ rM rI. Um den Abstand der ISS zur Erdoberfläche zu erhalten müssen wir noch den Radius der Erde abziehen: solqtyhrIf - r_EarthIndexrIn-rEnm h sscrISS - r_EarthIndex hf rI - rE h. % h hf hII abc GesGeschwindigkeitv si % Die Geschwindigkeit der ISS beträgt solqtywfracpiT*pi/TInrps solqtyvrIf omegarIn*wn sscvISS vf rIw v. % v vf vII abcliste
Die Umlaufzeit der ernationalen Raumstation ISS um die Erde beträgt etwa min. abcliste abc In welcher Höhe über der Erdoberfläche etwa bewegt sich die Raumstation? abc Mit welcher Geschwindigkeit bewegt sich die Raumstation relativ zur Erde? abcliste
Solution:
newqtyTIomin newqtyTIs newqtyrEem newqtyrM.em newqtyTM.es % GegsscTISS TIo TI % Das dritte Kepler'sche Gesetz schafft eine Beziehung zwischen zwei verschiedenen Körpern welche um denselben dritten Körper kreisen. Wir müssen also -- nebst der Raumstation ISS -- einen weiteren Körper finden welcher um die Erde kreist. Das ist nicht schwieirig: Der Mond kreist um die Erde wir kennen den Radius seiner Kreisbahn sowie seine Umlaufzeit. Damit können die folgen zwei Teilaufgaben gelöst werden: abcliste abc GesHöheh sim Der Radius der Kreisbahn der ISS beträgt solqtyrIsqrtfracsscTISS^T^_MoonIndex r_MoonIndexTIn**/TMn**^/*rMnm al sscrISS rIf sqrtfracqtyTI^qtyTM^ rM rI. Um den Abstand der ISS zur Erdoberfläche zu erhalten müssen wir noch den Radius der Erde abziehen: solqtyhrIf - r_EarthIndexrIn-rEnm h sscrISS - r_EarthIndex hf rI - rE h. % h hf hII abc GesGeschwindigkeitv si % Die Geschwindigkeit der ISS beträgt solqtywfracpiT*pi/TInrps solqtyvrIf omegarIn*wn sscvISS vf rIw v. % v vf vII abcliste
Contained in these collections:
-
Keplersche Gesetze by pw
-
Keplersche Gesetze by uz
-
Aufgaben Kap. B4 by cm