Rechnung bei Linsenkombination
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Berechne nun die Grössen aus den vorhergehen beiden Aufgaben mit den Linsenformeln.
Solution:
newqtygcm newqtyb-cm solqtyffracbgb+gbn*gn/bn+gncm Zu U./A: al f ff fracb gb + g Tecf Zu U./A newqtyfecm newqtyfzcm newqtydcm newqtybzcm newqtyBzcm % Geg f_ fe f_ fz d d b_ bz B_ Bz % GesGegenstandsweiteg_ sicm % Wir berechnen zunächst die Gegenstandsweite vor der zweiten Linse: solqtygzfracb_f_b_-f_bzn*fzn/bzn-fzncm al g_ gzf fracTecbz TecfzTecbz - Tecfz Tecgz. Da der Gegenstandspunkt der zweiten Linse gerade dem Bildpunkt des ersten entspricht ist b_ d - g_. Damit folgt für die Gegenstandsweite solqtygefracdb_-df_-b_f_f_db_-df_-b_f_-b_f_+f_f_dn-gzn*fen/dn-gzn-fencm al g_ fracb_f_b_-f_ fracd-g_f_d-g_-f_ fracqtyd-fracb_f_b_-f_f_d-fracb_f_b_-f_-f_ fracqtyd - Tecgz fed - Tecgz - fe Tecge. % g_ gef Tecge GesGegenstandsgrösseG_ sim Auf ähnliche Weise finden wir die Gegenstandshöhe. Wir berechnen zunächst die Gegenstandshöhe für L_: solqtyGzB_ fracf_b_-f_Bzn*gzn/bzncm al G_ B_ fracg_b_ Gzf Bz fracTecgzbz TecGz. Das entspricht der Bildhöhe der ersten Linse B_ G_. Daraus folgt für die Gegenstandshöhe: solqtyGeB_ fracf_f_d-g_-f_b_-f_Gzn*gen/dn-gzncm al G_ B_ fracg_d-g_ G_ fracf_d-g_-f_ Gef TecGz fracTecgeTecd-Tecgz-fe TecGe. % G_ Gef TecGe
Berechne nun die Grössen aus den vorhergehen beiden Aufgaben mit den Linsenformeln.
Solution:
newqtygcm newqtyb-cm solqtyffracbgb+gbn*gn/bn+gncm Zu U./A: al f ff fracb gb + g Tecf Zu U./A newqtyfecm newqtyfzcm newqtydcm newqtybzcm newqtyBzcm % Geg f_ fe f_ fz d d b_ bz B_ Bz % GesGegenstandsweiteg_ sicm % Wir berechnen zunächst die Gegenstandsweite vor der zweiten Linse: solqtygzfracb_f_b_-f_bzn*fzn/bzn-fzncm al g_ gzf fracTecbz TecfzTecbz - Tecfz Tecgz. Da der Gegenstandspunkt der zweiten Linse gerade dem Bildpunkt des ersten entspricht ist b_ d - g_. Damit folgt für die Gegenstandsweite solqtygefracdb_-df_-b_f_f_db_-df_-b_f_-b_f_+f_f_dn-gzn*fen/dn-gzn-fencm al g_ fracb_f_b_-f_ fracd-g_f_d-g_-f_ fracqtyd-fracb_f_b_-f_f_d-fracb_f_b_-f_-f_ fracqtyd - Tecgz fed - Tecgz - fe Tecge. % g_ gef Tecge GesGegenstandsgrösseG_ sim Auf ähnliche Weise finden wir die Gegenstandshöhe. Wir berechnen zunächst die Gegenstandshöhe für L_: solqtyGzB_ fracf_b_-f_Bzn*gzn/bzncm al G_ B_ fracg_b_ Gzf Bz fracTecgzbz TecGz. Das entspricht der Bildhöhe der ersten Linse B_ G_. Daraus folgt für die Gegenstandshöhe: solqtyGeB_ fracf_f_d-g_-f_b_-f_Gzn*gen/dn-gzncm al G_ B_ fracg_d-g_ G_ fracf_d-g_-f_ Gef TecGz fracTecgeTecd-Tecgz-fe TecGe. % G_ Gef TecGe
Meta Information
Exercise:
Berechne nun die Grössen aus den vorhergehen beiden Aufgaben mit den Linsenformeln.
Solution:
newqtygcm newqtyb-cm solqtyffracbgb+gbn*gn/bn+gncm Zu U./A: al f ff fracb gb + g Tecf Zu U./A newqtyfecm newqtyfzcm newqtydcm newqtybzcm newqtyBzcm % Geg f_ fe f_ fz d d b_ bz B_ Bz % GesGegenstandsweiteg_ sicm % Wir berechnen zunächst die Gegenstandsweite vor der zweiten Linse: solqtygzfracb_f_b_-f_bzn*fzn/bzn-fzncm al g_ gzf fracTecbz TecfzTecbz - Tecfz Tecgz. Da der Gegenstandspunkt der zweiten Linse gerade dem Bildpunkt des ersten entspricht ist b_ d - g_. Damit folgt für die Gegenstandsweite solqtygefracdb_-df_-b_f_f_db_-df_-b_f_-b_f_+f_f_dn-gzn*fen/dn-gzn-fencm al g_ fracb_f_b_-f_ fracd-g_f_d-g_-f_ fracqtyd-fracb_f_b_-f_f_d-fracb_f_b_-f_-f_ fracqtyd - Tecgz fed - Tecgz - fe Tecge. % g_ gef Tecge GesGegenstandsgrösseG_ sim Auf ähnliche Weise finden wir die Gegenstandshöhe. Wir berechnen zunächst die Gegenstandshöhe für L_: solqtyGzB_ fracf_b_-f_Bzn*gzn/bzncm al G_ B_ fracg_b_ Gzf Bz fracTecgzbz TecGz. Das entspricht der Bildhöhe der ersten Linse B_ G_. Daraus folgt für die Gegenstandshöhe: solqtyGeB_ fracf_f_d-g_-f_b_-f_Gzn*gen/dn-gzncm al G_ B_ fracg_d-g_ G_ fracf_d-g_-f_ Gef TecGz fracTecgeTecd-Tecgz-fe TecGe. % G_ Gef TecGe
Berechne nun die Grössen aus den vorhergehen beiden Aufgaben mit den Linsenformeln.
Solution:
newqtygcm newqtyb-cm solqtyffracbgb+gbn*gn/bn+gncm Zu U./A: al f ff fracb gb + g Tecf Zu U./A newqtyfecm newqtyfzcm newqtydcm newqtybzcm newqtyBzcm % Geg f_ fe f_ fz d d b_ bz B_ Bz % GesGegenstandsweiteg_ sicm % Wir berechnen zunächst die Gegenstandsweite vor der zweiten Linse: solqtygzfracb_f_b_-f_bzn*fzn/bzn-fzncm al g_ gzf fracTecbz TecfzTecbz - Tecfz Tecgz. Da der Gegenstandspunkt der zweiten Linse gerade dem Bildpunkt des ersten entspricht ist b_ d - g_. Damit folgt für die Gegenstandsweite solqtygefracdb_-df_-b_f_f_db_-df_-b_f_-b_f_+f_f_dn-gzn*fen/dn-gzn-fencm al g_ fracb_f_b_-f_ fracd-g_f_d-g_-f_ fracqtyd-fracb_f_b_-f_f_d-fracb_f_b_-f_-f_ fracqtyd - Tecgz fed - Tecgz - fe Tecge. % g_ gef Tecge GesGegenstandsgrösseG_ sim Auf ähnliche Weise finden wir die Gegenstandshöhe. Wir berechnen zunächst die Gegenstandshöhe für L_: solqtyGzB_ fracf_b_-f_Bzn*gzn/bzncm al G_ B_ fracg_b_ Gzf Bz fracTecgzbz TecGz. Das entspricht der Bildhöhe der ersten Linse B_ G_. Daraus folgt für die Gegenstandshöhe: solqtyGeB_ fracf_f_d-g_-f_b_-f_Gzn*gen/dn-gzncm al G_ B_ fracg_d-g_ G_ fracf_d-g_-f_ Gef TecGz fracTecgeTecd-Tecgz-fe TecGe. % G_ Gef TecGe
Contained in these collections:
-
Linsengleichungen by pw