Ristretto aus der Kaffeemaschine
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Temperatur \(T\) / Wärme \(Q\) / Wärmekapazität \(c\) /
The following formulas must be used to solve the exercise:
\(Q = c \cdot m \cdot \Delta\vartheta \quad \) \(\sum Q^\nearrow \stackrel{!}{=} \sum Q^\swarrow \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Ristretto mRO laufe mit TRO aus der Kaffeemaschine in eine leicht angewärmte Porzellantasse TpO mpO mit cpO. Welche Mischtemperatur Kaffee und Tasse stellt sich ein wenn alle anderen Verluste ignoriert werden?
Solution:
unknowntheta^* SolQtyTfracssccR sscmR sscthetaR + ssccP sscmP sscthetaPssccP sscmP + ssccR sscmRcWaX*mRX*TRX+cpX*mpX*TpX/cWaX*mRX+cpX*mpXcelsius WaermeSchritte PGleichungsscQP sscQR PGleichungssccP sscmP DeltasscthetaP ssccR sscmR DeltasscthetaR PGleichungssccP sscmP qtyuk - sscthetaP ssccR sscmR qtysscthetaR - uk MGleichungssccP sscmP uk - ssccP sscmP sscthetaP ssccR sscmR sscthetaR - ssccR sscmR uk MGleichungssccP sscmP uk + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichungqtyssccP sscmP + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichunguk TF PHYSMATH al theta^* TF fraccWa mR TR + cp mp TpcWa mR + cp mp TQ approx TP
Ein Ristretto mRO laufe mit TRO aus der Kaffeemaschine in eine leicht angewärmte Porzellantasse TpO mpO mit cpO. Welche Mischtemperatur Kaffee und Tasse stellt sich ein wenn alle anderen Verluste ignoriert werden?
Solution:
unknowntheta^* SolQtyTfracssccR sscmR sscthetaR + ssccP sscmP sscthetaPssccP sscmP + ssccR sscmRcWaX*mRX*TRX+cpX*mpX*TpX/cWaX*mRX+cpX*mpXcelsius WaermeSchritte PGleichungsscQP sscQR PGleichungssccP sscmP DeltasscthetaP ssccR sscmR DeltasscthetaR PGleichungssccP sscmP qtyuk - sscthetaP ssccR sscmR qtysscthetaR - uk MGleichungssccP sscmP uk - ssccP sscmP sscthetaP ssccR sscmR sscthetaR - ssccR sscmR uk MGleichungssccP sscmP uk + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichungqtyssccP sscmP + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichunguk TF PHYSMATH al theta^* TF fraccWa mR TR + cp mp TpcWa mR + cp mp TQ approx TP
Meta Information
Exercise:
Ein Ristretto mRO laufe mit TRO aus der Kaffeemaschine in eine leicht angewärmte Porzellantasse TpO mpO mit cpO. Welche Mischtemperatur Kaffee und Tasse stellt sich ein wenn alle anderen Verluste ignoriert werden?
Solution:
unknowntheta^* SolQtyTfracssccR sscmR sscthetaR + ssccP sscmP sscthetaPssccP sscmP + ssccR sscmRcWaX*mRX*TRX+cpX*mpX*TpX/cWaX*mRX+cpX*mpXcelsius WaermeSchritte PGleichungsscQP sscQR PGleichungssccP sscmP DeltasscthetaP ssccR sscmR DeltasscthetaR PGleichungssccP sscmP qtyuk - sscthetaP ssccR sscmR qtysscthetaR - uk MGleichungssccP sscmP uk - ssccP sscmP sscthetaP ssccR sscmR sscthetaR - ssccR sscmR uk MGleichungssccP sscmP uk + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichungqtyssccP sscmP + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichunguk TF PHYSMATH al theta^* TF fraccWa mR TR + cp mp TpcWa mR + cp mp TQ approx TP
Ein Ristretto mRO laufe mit TRO aus der Kaffeemaschine in eine leicht angewärmte Porzellantasse TpO mpO mit cpO. Welche Mischtemperatur Kaffee und Tasse stellt sich ein wenn alle anderen Verluste ignoriert werden?
Solution:
unknowntheta^* SolQtyTfracssccR sscmR sscthetaR + ssccP sscmP sscthetaPssccP sscmP + ssccR sscmRcWaX*mRX*TRX+cpX*mpX*TpX/cWaX*mRX+cpX*mpXcelsius WaermeSchritte PGleichungsscQP sscQR PGleichungssccP sscmP DeltasscthetaP ssccR sscmR DeltasscthetaR PGleichungssccP sscmP qtyuk - sscthetaP ssccR sscmR qtysscthetaR - uk MGleichungssccP sscmP uk - ssccP sscmP sscthetaP ssccR sscmR sscthetaR - ssccR sscmR uk MGleichungssccP sscmP uk + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichungqtyssccP sscmP + ssccR sscmR uk ssccR sscmR sscthetaR + ssccP sscmP sscthetaP MGleichunguk TF PHYSMATH al theta^* TF fraccWa mR TR + cp mp TpcWa mR + cp mp TQ approx TP
Contained in these collections:
-
Wärmelehre: Wärmekapazität by Lie
-
Kalorik - mischen - 2Q 2c by TeXercises