Schaltungs-Sudoku
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Berechnen Sie für die folge Schaltung alle Ströme und die Spannung an jedem Widerstand. Die Spannung der Quelle der Ersatzwiderstand und die der einzelnen Widerstände sind der Tabelle zu entnehmen. Für richtig berechnete Teilströme und -spannungen gibt es je einen halben und für den Gesamtstrom zwei wenn der Lösungsweg ersichtlich und nachvollziehbar ist. center tikzpicture draw . to european resistor l^R_ .; draw . to european resistor l^R_ .; draw -. to european resistor l^R_ -.; draw -. to european resistor l^R_ -.; draw -.. to battery l^U_ ..; draw -..---.; draw ..--.; draw -.--; draw --.; draw .---.; draw .---.; tikzpicture center center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & & & & hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & & & & & hline tabularx center
Solution:
center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & num & num. & num & num hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & num. & num. & num. & num. & num. hline tabularx center al R_ Rof RoTTTT. Der Gesamtstrom ist folglich al I_ Iof fracUoRo IoTTT. Die Ströme durch die ersten beiden und die zweiten beiden Widerstände sind al I_ I_ Ief fracUoRe+Rz IeTTT und al I_ I_ Idf fracUoRd+Rv IdTTT. Die Spannungen sind folglich al U_ Uef Re IeTTT UeTTT al U_ Uzf Rz IeTTT UzTTT al U_ Udf Rd IdTTT UdTTT und al U_ Uvf Rv IdTTT UvTTT.
Berechnen Sie für die folge Schaltung alle Ströme und die Spannung an jedem Widerstand. Die Spannung der Quelle der Ersatzwiderstand und die der einzelnen Widerstände sind der Tabelle zu entnehmen. Für richtig berechnete Teilströme und -spannungen gibt es je einen halben und für den Gesamtstrom zwei wenn der Lösungsweg ersichtlich und nachvollziehbar ist. center tikzpicture draw . to european resistor l^R_ .; draw . to european resistor l^R_ .; draw -. to european resistor l^R_ -.; draw -. to european resistor l^R_ -.; draw -.. to battery l^U_ ..; draw -..---.; draw ..--.; draw -.--; draw --.; draw .---.; draw .---.; tikzpicture center center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & & & & hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & & & & & hline tabularx center
Solution:
center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & num & num. & num & num hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & num. & num. & num. & num. & num. hline tabularx center al R_ Rof RoTTTT. Der Gesamtstrom ist folglich al I_ Iof fracUoRo IoTTT. Die Ströme durch die ersten beiden und die zweiten beiden Widerstände sind al I_ I_ Ief fracUoRe+Rz IeTTT und al I_ I_ Idf fracUoRd+Rv IdTTT. Die Spannungen sind folglich al U_ Uef Re IeTTT UeTTT al U_ Uzf Rz IeTTT UzTTT al U_ Udf Rd IdTTT UdTTT und al U_ Uvf Rv IdTTT UvTTT.
Meta Information
Exercise:
Berechnen Sie für die folge Schaltung alle Ströme und die Spannung an jedem Widerstand. Die Spannung der Quelle der Ersatzwiderstand und die der einzelnen Widerstände sind der Tabelle zu entnehmen. Für richtig berechnete Teilströme und -spannungen gibt es je einen halben und für den Gesamtstrom zwei wenn der Lösungsweg ersichtlich und nachvollziehbar ist. center tikzpicture draw . to european resistor l^R_ .; draw . to european resistor l^R_ .; draw -. to european resistor l^R_ -.; draw -. to european resistor l^R_ -.; draw -.. to battery l^U_ ..; draw -..---.; draw ..--.; draw -.--; draw --.; draw .---.; draw .---.; tikzpicture center center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & & & & hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & & & & & hline tabularx center
Solution:
center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & num & num. & num & num hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & num. & num. & num. & num. & num. hline tabularx center al R_ Rof RoTTTT. Der Gesamtstrom ist folglich al I_ Iof fracUoRo IoTTT. Die Ströme durch die ersten beiden und die zweiten beiden Widerstände sind al I_ I_ Ief fracUoRe+Rz IeTTT und al I_ I_ Idf fracUoRd+Rv IdTTT. Die Spannungen sind folglich al U_ Uef Re IeTTT UeTTT al U_ Uzf Rz IeTTT UzTTT al U_ Udf Rd IdTTT UdTTT und al U_ Uvf Rv IdTTT UvTTT.
Berechnen Sie für die folge Schaltung alle Ströme und die Spannung an jedem Widerstand. Die Spannung der Quelle der Ersatzwiderstand und die der einzelnen Widerstände sind der Tabelle zu entnehmen. Für richtig berechnete Teilströme und -spannungen gibt es je einen halben und für den Gesamtstrom zwei wenn der Lösungsweg ersichtlich und nachvollziehbar ist. center tikzpicture draw . to european resistor l^R_ .; draw . to european resistor l^R_ .; draw -. to european resistor l^R_ -.; draw -. to european resistor l^R_ -.; draw -.. to battery l^U_ ..; draw -..---.; draw ..--.; draw -.--; draw --.; draw .---.; draw .---.; tikzpicture center center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & & & & hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & & & & & hline tabularx center
Solution:
center defarraystretch. tabularx.textwidth|r|X|X|X|X|X| hline & i & i & i & i & i hline U_i/siV & cellcolorgraynumUon & num & num. & num & num hline R_i/siohm & cellcolorgraynum. & cellcolorgraynumRen &cellcolorgray numRzn & cellcolorgraynumRdn & cellcolorgraynumRvn hline I_i/siA & num. & num. & num. & num. & num. hline tabularx center al R_ Rof RoTTTT. Der Gesamtstrom ist folglich al I_ Iof fracUoRo IoTTT. Die Ströme durch die ersten beiden und die zweiten beiden Widerstände sind al I_ I_ Ief fracUoRe+Rz IeTTT und al I_ I_ Idf fracUoRd+Rv IdTTT. Die Spannungen sind folglich al U_ Uef Re IeTTT UeTTT al U_ Uzf Rz IeTTT UzTTT al U_ Udf Rd IdTTT UdTTT und al U_ Uvf Rv IdTTT UvTTT.
Contained in these collections:
-
Gleichstrom-Sudoku by TeXercises