Vier Kondensatoren
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Kapazität \(C\) /
The following formulas must be used to solve the exercise:
\(C = C_1 + C_2 \quad \) \(\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Wie gross ist die Gesamtkapazität von vier Kondensatoren mit je .micro F Kapazität in den folgen Fällen? abcliste abc Alle Kondensatoren parallel geschaltet. abc Alle Kondensatoren in Serie geschaltet. abc Je zwei parallel die beiden Gruppen in Serie geschaltet. abc Drei in Serie geschaltet dazu der vierte parallel. abc Drei parallel geschaltet dazu der vierte in Serie. abcliste
Solution:
abcliste abc In einer Parallelschaltung können die Kapazitäten einfach aufaddiert werden. Daher ergibt sich die Ersatzkapazität zu sscCp C .micro F micro F. abc In einer Serieschaltung addieren sich die Inversen der Einzelkapazitäten. Die Ersatzkapazität ist sscCs qty fracC^- fracC frac.micro F .micro F. abc Beide Gruppen aus zwei parallel geschalteten Einzelkondensatoren haben al sscCp C .micro F micro F Kapazität. In Serie geschaltet ergibt sich eine Gesamtkapazität von al sscCGes fracsscCp C .micro F. abc al sscCGes C + sscCs C + fracC fracC frac .micro F .micro F abc al sscCGes qtyfracC + fracC^-^- fracC frac.micro F .micro F abcliste
Wie gross ist die Gesamtkapazität von vier Kondensatoren mit je .micro F Kapazität in den folgen Fällen? abcliste abc Alle Kondensatoren parallel geschaltet. abc Alle Kondensatoren in Serie geschaltet. abc Je zwei parallel die beiden Gruppen in Serie geschaltet. abc Drei in Serie geschaltet dazu der vierte parallel. abc Drei parallel geschaltet dazu der vierte in Serie. abcliste
Solution:
abcliste abc In einer Parallelschaltung können die Kapazitäten einfach aufaddiert werden. Daher ergibt sich die Ersatzkapazität zu sscCp C .micro F micro F. abc In einer Serieschaltung addieren sich die Inversen der Einzelkapazitäten. Die Ersatzkapazität ist sscCs qty fracC^- fracC frac.micro F .micro F. abc Beide Gruppen aus zwei parallel geschalteten Einzelkondensatoren haben al sscCp C .micro F micro F Kapazität. In Serie geschaltet ergibt sich eine Gesamtkapazität von al sscCGes fracsscCp C .micro F. abc al sscCGes C + sscCs C + fracC fracC frac .micro F .micro F abc al sscCGes qtyfracC + fracC^-^- fracC frac.micro F .micro F abcliste
Meta Information
Exercise:
Wie gross ist die Gesamtkapazität von vier Kondensatoren mit je .micro F Kapazität in den folgen Fällen? abcliste abc Alle Kondensatoren parallel geschaltet. abc Alle Kondensatoren in Serie geschaltet. abc Je zwei parallel die beiden Gruppen in Serie geschaltet. abc Drei in Serie geschaltet dazu der vierte parallel. abc Drei parallel geschaltet dazu der vierte in Serie. abcliste
Solution:
abcliste abc In einer Parallelschaltung können die Kapazitäten einfach aufaddiert werden. Daher ergibt sich die Ersatzkapazität zu sscCp C .micro F micro F. abc In einer Serieschaltung addieren sich die Inversen der Einzelkapazitäten. Die Ersatzkapazität ist sscCs qty fracC^- fracC frac.micro F .micro F. abc Beide Gruppen aus zwei parallel geschalteten Einzelkondensatoren haben al sscCp C .micro F micro F Kapazität. In Serie geschaltet ergibt sich eine Gesamtkapazität von al sscCGes fracsscCp C .micro F. abc al sscCGes C + sscCs C + fracC fracC frac .micro F .micro F abc al sscCGes qtyfracC + fracC^-^- fracC frac.micro F .micro F abcliste
Wie gross ist die Gesamtkapazität von vier Kondensatoren mit je .micro F Kapazität in den folgen Fällen? abcliste abc Alle Kondensatoren parallel geschaltet. abc Alle Kondensatoren in Serie geschaltet. abc Je zwei parallel die beiden Gruppen in Serie geschaltet. abc Drei in Serie geschaltet dazu der vierte parallel. abc Drei parallel geschaltet dazu der vierte in Serie. abcliste
Solution:
abcliste abc In einer Parallelschaltung können die Kapazitäten einfach aufaddiert werden. Daher ergibt sich die Ersatzkapazität zu sscCp C .micro F micro F. abc In einer Serieschaltung addieren sich die Inversen der Einzelkapazitäten. Die Ersatzkapazität ist sscCs qty fracC^- fracC frac.micro F .micro F. abc Beide Gruppen aus zwei parallel geschalteten Einzelkondensatoren haben al sscCp C .micro F micro F Kapazität. In Serie geschaltet ergibt sich eine Gesamtkapazität von al sscCGes fracsscCp C .micro F. abc al sscCGes C + sscCs C + fracC fracC frac .micro F .micro F abc al sscCGes qtyfracC + fracC^-^- fracC frac.micro F .micro F abcliste
Contained in these collections:
-
Kondensatorschaltungen by pw
-
Kondensator-Schaltungen by TeXercises
-
Elektrischer Kondensator by uz
-
Elektrischer Kondensator by pw
-
PFP: Kapazität by sn