Astroblaster
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Geschwindigkeit \(v\) / Impuls \(p\) /
The following formulas must be used to solve the exercise:
\(p = mv \quad \) \(\sum p_{\scriptscriptstyle\rm tot} \stackrel{!}{=} \sum p_{\scriptscriptstyle\rm tot}' \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Zwei Bälle werden senkrecht übereinander gelegt wobei der obere Ball die Masse m und der untere Ball die Masse n m hat. Die Schwerpunkte der Bälle und ihr Kontaktpunkt liegen auf einer Linie. Die Bälle werden dann aus der Höhe h fallen gelassen. Welche Höhe erreicht der kleinere Ball nach dem gemeinsamen Aufprall am Boden?
Solution:
center tikzpicture scope node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack circle .; drawcolorblack . circle .; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway right v; drawstealthlatex- colorblue .--. nodemidway right v; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred -..---.. nodemidway left v_; drawstealthlatex- colorblue ..--.. nodemidway right v_; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway left v_'; drawstealthlatex- colorblue .--. nodemidway right v_'; scope tikzpicture center Die beiden Bälle treffen am Boden mit vsqrtgh auf worauf die Geschwindigkeit des ersten roten Balles beim Kontakt mit dem Boden im Idealfall reflektiert wird so dass v_ -v gilt. Stossen nun der rote m_nm v_-v und der blaue Ball m_m v_v elastisch so gilt für die Geschwindigkeit nach dem Stoss: v_' fracm_-m_v_+m_v_m_+m_ fracm-nmv+nm-vnm+m fracmv -nmvn+m -fracn-n+v Da die Höhen proportional zu den Geschwindigkeiten im Quadrat sind v^propto h gilt: frach'h &propto fracv'^v^ &propto leftfracn-n+right^ &approx Der kleinere Ball erreicht also bei ideal elastischem Stoss im Grenzfall nrightarrowinfty die rund -fache Anfangshöhe.
Zwei Bälle werden senkrecht übereinander gelegt wobei der obere Ball die Masse m und der untere Ball die Masse n m hat. Die Schwerpunkte der Bälle und ihr Kontaktpunkt liegen auf einer Linie. Die Bälle werden dann aus der Höhe h fallen gelassen. Welche Höhe erreicht der kleinere Ball nach dem gemeinsamen Aufprall am Boden?
Solution:
center tikzpicture scope node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack circle .; drawcolorblack . circle .; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway right v; drawstealthlatex- colorblue .--. nodemidway right v; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred -..---.. nodemidway left v_; drawstealthlatex- colorblue ..--.. nodemidway right v_; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway left v_'; drawstealthlatex- colorblue .--. nodemidway right v_'; scope tikzpicture center Die beiden Bälle treffen am Boden mit vsqrtgh auf worauf die Geschwindigkeit des ersten roten Balles beim Kontakt mit dem Boden im Idealfall reflektiert wird so dass v_ -v gilt. Stossen nun der rote m_nm v_-v und der blaue Ball m_m v_v elastisch so gilt für die Geschwindigkeit nach dem Stoss: v_' fracm_-m_v_+m_v_m_+m_ fracm-nmv+nm-vnm+m fracmv -nmvn+m -fracn-n+v Da die Höhen proportional zu den Geschwindigkeiten im Quadrat sind v^propto h gilt: frach'h &propto fracv'^v^ &propto leftfracn-n+right^ &approx Der kleinere Ball erreicht also bei ideal elastischem Stoss im Grenzfall nrightarrowinfty die rund -fache Anfangshöhe.
Meta Information
Exercise:
Zwei Bälle werden senkrecht übereinander gelegt wobei der obere Ball die Masse m und der untere Ball die Masse n m hat. Die Schwerpunkte der Bälle und ihr Kontaktpunkt liegen auf einer Linie. Die Bälle werden dann aus der Höhe h fallen gelassen. Welche Höhe erreicht der kleinere Ball nach dem gemeinsamen Aufprall am Boden?
Solution:
center tikzpicture scope node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack circle .; drawcolorblack . circle .; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway right v; drawstealthlatex- colorblue .--. nodemidway right v; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred -..---.. nodemidway left v_; drawstealthlatex- colorblue ..--.. nodemidway right v_; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway left v_'; drawstealthlatex- colorblue .--. nodemidway right v_'; scope tikzpicture center Die beiden Bälle treffen am Boden mit vsqrtgh auf worauf die Geschwindigkeit des ersten roten Balles beim Kontakt mit dem Boden im Idealfall reflektiert wird so dass v_ -v gilt. Stossen nun der rote m_nm v_-v und der blaue Ball m_m v_v elastisch so gilt für die Geschwindigkeit nach dem Stoss: v_' fracm_-m_v_+m_v_m_+m_ fracm-nmv+nm-vnm+m fracmv -nmvn+m -fracn-n+v Da die Höhen proportional zu den Geschwindigkeiten im Quadrat sind v^propto h gilt: frach'h &propto fracv'^v^ &propto leftfracn-n+right^ &approx Der kleinere Ball erreicht also bei ideal elastischem Stoss im Grenzfall nrightarrowinfty die rund -fache Anfangshöhe.
Zwei Bälle werden senkrecht übereinander gelegt wobei der obere Ball die Masse m und der untere Ball die Masse n m hat. Die Schwerpunkte der Bälle und ihr Kontaktpunkt liegen auf einer Linie. Die Bälle werden dann aus der Höhe h fallen gelassen. Welche Höhe erreicht der kleinere Ball nach dem gemeinsamen Aufprall am Boden?
Solution:
center tikzpicture scope node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack circle .; drawcolorblack . circle .; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway right v; drawstealthlatex- colorblue .--. nodemidway right v; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred -..---.. nodemidway left v_; drawstealthlatex- colorblue ..--.. nodemidway right v_; scope scopexshiftcm node at Situation ; drawcolorgreen!!white fillgreen!!white - rectangle -.; drawthick ---; fillcolorblack fillred!!white . circle .; fillcolorblack fillblue!!white . circle .; drawcolorblack . circle .; drawcolorblack . circle .; drawstealthlatex- colorred .--. nodemidway left v_'; drawstealthlatex- colorblue .--. nodemidway right v_'; scope tikzpicture center Die beiden Bälle treffen am Boden mit vsqrtgh auf worauf die Geschwindigkeit des ersten roten Balles beim Kontakt mit dem Boden im Idealfall reflektiert wird so dass v_ -v gilt. Stossen nun der rote m_nm v_-v und der blaue Ball m_m v_v elastisch so gilt für die Geschwindigkeit nach dem Stoss: v_' fracm_-m_v_+m_v_m_+m_ fracm-nmv+nm-vnm+m fracmv -nmvn+m -fracn-n+v Da die Höhen proportional zu den Geschwindigkeiten im Quadrat sind v^propto h gilt: frach'h &propto fracv'^v^ &propto leftfracn-n+right^ &approx Der kleinere Ball erreicht also bei ideal elastischem Stoss im Grenzfall nrightarrowinfty die rund -fache Anfangshöhe.
Linked Clicker question: Weinspritzer an Schulter
Contained in these collections:
-
Astroblaster by TeXercises
-
-
Elastischer Stoss by uz