Basics mit Serie- und Parallelschaltung
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Bestimme für die folgen beiden Schaltungen den Ersatzwiderstand die von der Spannungsquelle gelieferte Stromstärke die Spannung an jedem Widerstand sowie die Stromstärke durch jeden Widerstand. An beiden Schaltungen liegt eine Spannung von V an. center circuitikz scope draw to european resistor l^ohm ; draw to european resistor l^ohm .; draw --- to battery ---; scope scopexshiftcm draw . to european resistor l^ohm .; draw -. to european resistor l^ohm -.; draw .---.; draw .---.; draw ---.; draw --.; draw .--.-. to battery -.-.---.; scope circuitikz center
Solution:
abcliste abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRoR_ + R_Ren + Rznohm solqtyIofracU_R_Uon/RonA solqtyUeR_I_Ren*IonV solqtyUzU_-U_Uon-UenV % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uen & Uzn hline R_isiohm & Ron & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIon & numIon hline tabularx bigskip Als erstes kann man den Ersatzwiderstand berechnen al R_ Rof Re + Rz RoTT. Mit diesem folgt für den Gesamtstrom al I_ Iof fracUoRoTT IoTT. Die Spannung am ersten Widerstand ist folglich al U_ R_ I_ Re IoTT UeTT diejenige am zweiten Widerstand al U_ U_ - U_ R_ I_ Uo - UeTT UzTT. abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRofracR_R_R_+R_Ren*Rzn/Ren+Rznohm solqtyIofracU_R_Uon/RonA solqtyIefracU_R_Uon/RenA solqtyIzI_-I_Ion-IenA % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uon & Uon hline R_isiohm & numRon & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIen & numIzn hline tabularx bigskip Der Ersatzwiderstand beträgt al R_ Rof fracRe RzRe + Rz RoTT. Der Strom durch den ersten Widerstand ist al I_ Ief fracUoRe IeTT derjenige durch den zweiten al I_ Izf Io - IeTT IzTT. abcliste
Bestimme für die folgen beiden Schaltungen den Ersatzwiderstand die von der Spannungsquelle gelieferte Stromstärke die Spannung an jedem Widerstand sowie die Stromstärke durch jeden Widerstand. An beiden Schaltungen liegt eine Spannung von V an. center circuitikz scope draw to european resistor l^ohm ; draw to european resistor l^ohm .; draw --- to battery ---; scope scopexshiftcm draw . to european resistor l^ohm .; draw -. to european resistor l^ohm -.; draw .---.; draw .---.; draw ---.; draw --.; draw .--.-. to battery -.-.---.; scope circuitikz center
Solution:
abcliste abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRoR_ + R_Ren + Rznohm solqtyIofracU_R_Uon/RonA solqtyUeR_I_Ren*IonV solqtyUzU_-U_Uon-UenV % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uen & Uzn hline R_isiohm & Ron & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIon & numIon hline tabularx bigskip Als erstes kann man den Ersatzwiderstand berechnen al R_ Rof Re + Rz RoTT. Mit diesem folgt für den Gesamtstrom al I_ Iof fracUoRoTT IoTT. Die Spannung am ersten Widerstand ist folglich al U_ R_ I_ Re IoTT UeTT diejenige am zweiten Widerstand al U_ U_ - U_ R_ I_ Uo - UeTT UzTT. abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRofracR_R_R_+R_Ren*Rzn/Ren+Rznohm solqtyIofracU_R_Uon/RonA solqtyIefracU_R_Uon/RenA solqtyIzI_-I_Ion-IenA % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uon & Uon hline R_isiohm & numRon & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIen & numIzn hline tabularx bigskip Der Ersatzwiderstand beträgt al R_ Rof fracRe RzRe + Rz RoTT. Der Strom durch den ersten Widerstand ist al I_ Ief fracUoRe IeTT derjenige durch den zweiten al I_ Izf Io - IeTT IzTT. abcliste
Meta Information
Exercise:
Bestimme für die folgen beiden Schaltungen den Ersatzwiderstand die von der Spannungsquelle gelieferte Stromstärke die Spannung an jedem Widerstand sowie die Stromstärke durch jeden Widerstand. An beiden Schaltungen liegt eine Spannung von V an. center circuitikz scope draw to european resistor l^ohm ; draw to european resistor l^ohm .; draw --- to battery ---; scope scopexshiftcm draw . to european resistor l^ohm .; draw -. to european resistor l^ohm -.; draw .---.; draw .---.; draw ---.; draw --.; draw .--.-. to battery -.-.---.; scope circuitikz center
Solution:
abcliste abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRoR_ + R_Ren + Rznohm solqtyIofracU_R_Uon/RonA solqtyUeR_I_Ren*IonV solqtyUzU_-U_Uon-UenV % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uen & Uzn hline R_isiohm & Ron & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIon & numIon hline tabularx bigskip Als erstes kann man den Ersatzwiderstand berechnen al R_ Rof Re + Rz RoTT. Mit diesem folgt für den Gesamtstrom al I_ Iof fracUoRoTT IoTT. Die Spannung am ersten Widerstand ist folglich al U_ R_ I_ Re IoTT UeTT diejenige am zweiten Widerstand al U_ U_ - U_ R_ I_ Uo - UeTT UzTT. abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRofracR_R_R_+R_Ren*Rzn/Ren+Rznohm solqtyIofracU_R_Uon/RonA solqtyIefracU_R_Uon/RenA solqtyIzI_-I_Ion-IenA % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uon & Uon hline R_isiohm & numRon & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIen & numIzn hline tabularx bigskip Der Ersatzwiderstand beträgt al R_ Rof fracRe RzRe + Rz RoTT. Der Strom durch den ersten Widerstand ist al I_ Ief fracUoRe IeTT derjenige durch den zweiten al I_ Izf Io - IeTT IzTT. abcliste
Bestimme für die folgen beiden Schaltungen den Ersatzwiderstand die von der Spannungsquelle gelieferte Stromstärke die Spannung an jedem Widerstand sowie die Stromstärke durch jeden Widerstand. An beiden Schaltungen liegt eine Spannung von V an. center circuitikz scope draw to european resistor l^ohm ; draw to european resistor l^ohm .; draw --- to battery ---; scope scopexshiftcm draw . to european resistor l^ohm .; draw -. to european resistor l^ohm -.; draw .---.; draw .---.; draw ---.; draw --.; draw .--.-. to battery -.-.---.; scope circuitikz center
Solution:
abcliste abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRoR_ + R_Ren + Rznohm solqtyIofracU_R_Uon/RonA solqtyUeR_I_Ren*IonV solqtyUzU_-U_Uon-UenV % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uen & Uzn hline R_isiohm & Ron & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIon & numIon hline tabularx bigskip Als erstes kann man den Ersatzwiderstand berechnen al R_ Rof Re + Rz RoTT. Mit diesem folgt für den Gesamtstrom al I_ Iof fracUoRoTT IoTT. Die Spannung am ersten Widerstand ist folglich al U_ R_ I_ Re IoTT UeTT diejenige am zweiten Widerstand al U_ U_ - U_ R_ I_ Uo - UeTT UzTT. abc newqtyReohm newqtyRzohm newqtyUoV % solqtyRofracR_R_R_+R_Ren*Rzn/Ren+Rznohm solqtyIofracU_R_Uon/RonA solqtyIefracU_R_Uon/RenA solqtyIzI_-I_Ion-IenA % Alle Werte sind der folgen Tabelle zu entnehmen: sisetupround-modefiguresround-eger-to-decimalround-precision tabularx.textwidth|X||r|r|r|hline & i & i & i hlinehline U_isiV & cellcolorgray.Uon & Uon & Uon hline R_isiohm & numRon & cellcolorgray.Ren & cellcolorgray.Rzn hline I_isiA & numIon & numIen & numIzn hline tabularx bigskip Der Ersatzwiderstand beträgt al R_ Rof fracRe RzRe + Rz RoTT. Der Strom durch den ersten Widerstand ist al I_ Ief fracUoRe IeTT derjenige durch den zweiten al I_ Izf Io - IeTT IzTT. abcliste
Contained in these collections:
-
Gleichstrom-Sudoku 1 by uz
-
Gleichstrom-Sudoku by TeXercises
-
Schaltungen I by pw
-
Gleichstrom-Sudoku by aej