Baumstamm am Seil
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Drehmoment \(\vec M\) /
The following formulas must be used to solve the exercise:
\(\sum \stackrel{\curvearrowleft}{M} \stackrel{!}{=} \sum \stackrel{\curvearrowright}{M} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein homogener Baumstamm mit lpO Länge mO Masse und dO Durchmesser wird unter einem Winkel von tetO gegen die Waagerechte an einem Ende hochgehalten. Die Haftreibungszahl zwischen Stamm und Boden beträgt muHO. Der Stamm gleitet gerade noch nicht nach rechts. DuSieBestimmeBestimmen Sie die Zugkraft im Seil und den Winkel welchen dieses mit der vertikalen Wand bildet. center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red rectangle .; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; tikzpicture center
Solution:
center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red opacity. rectangle .; draw--. nodemidway above left ellsqrtell'^+d^; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; filldrawcolorblue fillblue!!white --. arc:.:.cm--cycle; node at .:.cm alTQ; filldrawcolorred fillred!!white -- arc::cm--cycle; tikzpicture center Für die x-Richtung gilt: F_leftarrow F_rightarrow mu F_bot FZsheta Für die y-Richtung gilt: F_downarrow F_uparrow mg F_bot + FZcostheta Löst man das nach F_bot auf und setzt bei der x-Richtung ein erhält man: mu F_bot FZsheta mu mg-FZcostheta FZsheta mu mg - mu FZcostheta FZsheta mu mg FZsheta + mu costheta FZ fracmu mgsheta + mu costheta Für die Drehmomente gilt: stackrelcurvearrowleftM stackrelcurvearrowrightM FZcostheta ell^+ cosalpha^+ mg fracell^+cosalpha^+ + FZsheta ell^+ sinalpha^+ FZ fracmgtanalpha^+ costheta-sheta Setzt man die beiden Ausdrücke für FZ gleich erhält man: fracmgtanalpha^+ costheta-sheta fracmu mgsheta + mu costheta fractanalpha^+ costheta-sheta fracmusheta + mu costheta sheta + mu costheta mutanalpha^+costheta - mutanalpha^+sheta +mutanalpha^+ sheta mutanalpha^+-mucostheta tantheta fracmutanalpha^+-mu+mutanalpha^+ tanT
Ein homogener Baumstamm mit lpO Länge mO Masse und dO Durchmesser wird unter einem Winkel von tetO gegen die Waagerechte an einem Ende hochgehalten. Die Haftreibungszahl zwischen Stamm und Boden beträgt muHO. Der Stamm gleitet gerade noch nicht nach rechts. DuSieBestimmeBestimmen Sie die Zugkraft im Seil und den Winkel welchen dieses mit der vertikalen Wand bildet. center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red rectangle .; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; tikzpicture center
Solution:
center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red opacity. rectangle .; draw--. nodemidway above left ellsqrtell'^+d^; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; filldrawcolorblue fillblue!!white --. arc:.:.cm--cycle; node at .:.cm alTQ; filldrawcolorred fillred!!white -- arc::cm--cycle; tikzpicture center Für die x-Richtung gilt: F_leftarrow F_rightarrow mu F_bot FZsheta Für die y-Richtung gilt: F_downarrow F_uparrow mg F_bot + FZcostheta Löst man das nach F_bot auf und setzt bei der x-Richtung ein erhält man: mu F_bot FZsheta mu mg-FZcostheta FZsheta mu mg - mu FZcostheta FZsheta mu mg FZsheta + mu costheta FZ fracmu mgsheta + mu costheta Für die Drehmomente gilt: stackrelcurvearrowleftM stackrelcurvearrowrightM FZcostheta ell^+ cosalpha^+ mg fracell^+cosalpha^+ + FZsheta ell^+ sinalpha^+ FZ fracmgtanalpha^+ costheta-sheta Setzt man die beiden Ausdrücke für FZ gleich erhält man: fracmgtanalpha^+ costheta-sheta fracmu mgsheta + mu costheta fractanalpha^+ costheta-sheta fracmusheta + mu costheta sheta + mu costheta mutanalpha^+costheta - mutanalpha^+sheta +mutanalpha^+ sheta mutanalpha^+-mucostheta tantheta fracmutanalpha^+-mu+mutanalpha^+ tanT
Meta Information
Exercise:
Ein homogener Baumstamm mit lpO Länge mO Masse und dO Durchmesser wird unter einem Winkel von tetO gegen die Waagerechte an einem Ende hochgehalten. Die Haftreibungszahl zwischen Stamm und Boden beträgt muHO. Der Stamm gleitet gerade noch nicht nach rechts. DuSieBestimmeBestimmen Sie die Zugkraft im Seil und den Winkel welchen dieses mit der vertikalen Wand bildet. center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red rectangle .; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; tikzpicture center
Solution:
center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red opacity. rectangle .; draw--. nodemidway above left ellsqrtell'^+d^; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; filldrawcolorblue fillblue!!white --. arc:.:.cm--cycle; node at .:.cm alTQ; filldrawcolorred fillred!!white -- arc::cm--cycle; tikzpicture center Für die x-Richtung gilt: F_leftarrow F_rightarrow mu F_bot FZsheta Für die y-Richtung gilt: F_downarrow F_uparrow mg F_bot + FZcostheta Löst man das nach F_bot auf und setzt bei der x-Richtung ein erhält man: mu F_bot FZsheta mu mg-FZcostheta FZsheta mu mg - mu FZcostheta FZsheta mu mg FZsheta + mu costheta FZ fracmu mgsheta + mu costheta Für die Drehmomente gilt: stackrelcurvearrowleftM stackrelcurvearrowrightM FZcostheta ell^+ cosalpha^+ mg fracell^+cosalpha^+ + FZsheta ell^+ sinalpha^+ FZ fracmgtanalpha^+ costheta-sheta Setzt man die beiden Ausdrücke für FZ gleich erhält man: fracmgtanalpha^+ costheta-sheta fracmu mgsheta + mu costheta fractanalpha^+ costheta-sheta fracmusheta + mu costheta sheta + mu costheta mutanalpha^+costheta - mutanalpha^+sheta +mutanalpha^+ sheta mutanalpha^+-mucostheta tantheta fracmutanalpha^+-mu+mutanalpha^+ tanT
Ein homogener Baumstamm mit lpO Länge mO Masse und dO Durchmesser wird unter einem Winkel von tetO gegen die Waagerechte an einem Ende hochgehalten. Die Haftreibungszahl zwischen Stamm und Boden beträgt muHO. Der Stamm gleitet gerade noch nicht nach rechts. DuSieBestimmeBestimmen Sie die Zugkraft im Seil und den Winkel welchen dieses mit der vertikalen Wand bildet. center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red rectangle .; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; tikzpicture center
Solution:
center tikzpicturescale. filldrawcolorgreen fillgreen!!white - rectangle -.; pgftransformrotate filldrawcolorblack fillblack!!red opacity. rectangle .; draw--. nodemidway above left ellsqrtell'^+d^; pgftransformrotat drawthick ++:++:.--; filldrawcolorblack fillblack!!white rectangle .; filldrawcolorblue fillblue!!white --. arc:.:.cm--cycle; node at .:.cm alTQ; filldrawcolorred fillred!!white -- arc::cm--cycle; tikzpicture center Für die x-Richtung gilt: F_leftarrow F_rightarrow mu F_bot FZsheta Für die y-Richtung gilt: F_downarrow F_uparrow mg F_bot + FZcostheta Löst man das nach F_bot auf und setzt bei der x-Richtung ein erhält man: mu F_bot FZsheta mu mg-FZcostheta FZsheta mu mg - mu FZcostheta FZsheta mu mg FZsheta + mu costheta FZ fracmu mgsheta + mu costheta Für die Drehmomente gilt: stackrelcurvearrowleftM stackrelcurvearrowrightM FZcostheta ell^+ cosalpha^+ mg fracell^+cosalpha^+ + FZsheta ell^+ sinalpha^+ FZ fracmgtanalpha^+ costheta-sheta Setzt man die beiden Ausdrücke für FZ gleich erhält man: fracmgtanalpha^+ costheta-sheta fracmu mgsheta + mu costheta fractanalpha^+ costheta-sheta fracmusheta + mu costheta sheta + mu costheta mutanalpha^+costheta - mutanalpha^+sheta +mutanalpha^+ sheta mutanalpha^+-mucostheta tantheta fracmutanalpha^+-mu+mutanalpha^+ tanT
Contained in these collections:
-
Statik am Stahlträger by TeXercises
-