Träger hält fest
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Drehmoment \(\vec M\) /
The following formulas must be used to solve the exercise:
\(\sum \stackrel{\curvearrowleft}{M} \stackrel{!}{=} \sum \stackrel{\curvearrowright}{M} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein FO schwerer Träger der Länge ell sei drehbar am Punkt P aufgehängt. Am Ende des Trägers seien mO befestigt. Der Träger werde durch ein Seil in der Horizontalen gehalten so dass das Seil und Träger einen Winkel von aO einschliessen. Das Seil ist in fracell Abstand vom Punkt P befestigt vgl. Abb.. abcliste abc DuSieBestimmeBestimmen Sie die Zugspannung im oberen Seil. abc DuSieBestimmeBestimmen Sie die Komponenten der Kraft die die Halterung im Punkt P auf den Träger ausübt. abcliste center tikzpicturelatex scale.erface/.style postactiondrawdecoratedecorationborderangle amplitude.cmsegment length.mm drawline widthptgray -- ; drawvery thick .. -- ..; drawthick fillgray . circle mm; drawthick fillblack . circle mm; drawvery thick .. -- ..; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- ; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- .; drawthick fillgray . circle mm; drawthick fillblack . circle .mm; nodecolorgreen!!black at .. P; drawline widthpt . -- ; drawthick white circle .pt; drawthick . -- .; drawcolorgreen!!blackthick- .. -- .; nodecolorgreen!!black at . fracell; drawthick . arc ::.cm; nodecolorgreen!!black at .. aO; drawthick white . circle .pt; drawthick .-. circle mm; drawthickfillgray .-.-. rectangle .+.-.; nodecolorgreen!!black at - mO; tikzpicture center
Solution:
abcliste abc Die Drehmomentgleichung für die Drehachse beim Punkt P ist: M sscMS - sscMT - sscMg sscellSsscFS - sscellTsscFT - sscellgsscFg fracell sscFS sinalpha - fracellsscFT - ellsscFg Daraus erhalten wir für die Zugspannung im Seil: sscFS fracsscFT + sscFgsinalpha frac F + m ncgsina Fs approx FsS abc Die Horizontalkomponente der Kraft ist: F_x sscFS cosalpha Fs cosa Fx approx FxS Die Vertikalkomponente ist: F_y sscFT + sscFg - sscFS sinalpha F + m ncg - Fs sina Fy approx FyS abcliste
Ein FO schwerer Träger der Länge ell sei drehbar am Punkt P aufgehängt. Am Ende des Trägers seien mO befestigt. Der Träger werde durch ein Seil in der Horizontalen gehalten so dass das Seil und Träger einen Winkel von aO einschliessen. Das Seil ist in fracell Abstand vom Punkt P befestigt vgl. Abb.. abcliste abc DuSieBestimmeBestimmen Sie die Zugspannung im oberen Seil. abc DuSieBestimmeBestimmen Sie die Komponenten der Kraft die die Halterung im Punkt P auf den Träger ausübt. abcliste center tikzpicturelatex scale.erface/.style postactiondrawdecoratedecorationborderangle amplitude.cmsegment length.mm drawline widthptgray -- ; drawvery thick .. -- ..; drawthick fillgray . circle mm; drawthick fillblack . circle mm; drawvery thick .. -- ..; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- ; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- .; drawthick fillgray . circle mm; drawthick fillblack . circle .mm; nodecolorgreen!!black at .. P; drawline widthpt . -- ; drawthick white circle .pt; drawthick . -- .; drawcolorgreen!!blackthick- .. -- .; nodecolorgreen!!black at . fracell; drawthick . arc ::.cm; nodecolorgreen!!black at .. aO; drawthick white . circle .pt; drawthick .-. circle mm; drawthickfillgray .-.-. rectangle .+.-.; nodecolorgreen!!black at - mO; tikzpicture center
Solution:
abcliste abc Die Drehmomentgleichung für die Drehachse beim Punkt P ist: M sscMS - sscMT - sscMg sscellSsscFS - sscellTsscFT - sscellgsscFg fracell sscFS sinalpha - fracellsscFT - ellsscFg Daraus erhalten wir für die Zugspannung im Seil: sscFS fracsscFT + sscFgsinalpha frac F + m ncgsina Fs approx FsS abc Die Horizontalkomponente der Kraft ist: F_x sscFS cosalpha Fs cosa Fx approx FxS Die Vertikalkomponente ist: F_y sscFT + sscFg - sscFS sinalpha F + m ncg - Fs sina Fy approx FyS abcliste
Meta Information
Exercise:
Ein FO schwerer Träger der Länge ell sei drehbar am Punkt P aufgehängt. Am Ende des Trägers seien mO befestigt. Der Träger werde durch ein Seil in der Horizontalen gehalten so dass das Seil und Träger einen Winkel von aO einschliessen. Das Seil ist in fracell Abstand vom Punkt P befestigt vgl. Abb.. abcliste abc DuSieBestimmeBestimmen Sie die Zugspannung im oberen Seil. abc DuSieBestimmeBestimmen Sie die Komponenten der Kraft die die Halterung im Punkt P auf den Träger ausübt. abcliste center tikzpicturelatex scale.erface/.style postactiondrawdecoratedecorationborderangle amplitude.cmsegment length.mm drawline widthptgray -- ; drawvery thick .. -- ..; drawthick fillgray . circle mm; drawthick fillblack . circle mm; drawvery thick .. -- ..; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- ; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- .; drawthick fillgray . circle mm; drawthick fillblack . circle .mm; nodecolorgreen!!black at .. P; drawline widthpt . -- ; drawthick white circle .pt; drawthick . -- .; drawcolorgreen!!blackthick- .. -- .; nodecolorgreen!!black at . fracell; drawthick . arc ::.cm; nodecolorgreen!!black at .. aO; drawthick white . circle .pt; drawthick .-. circle mm; drawthickfillgray .-.-. rectangle .+.-.; nodecolorgreen!!black at - mO; tikzpicture center
Solution:
abcliste abc Die Drehmomentgleichung für die Drehachse beim Punkt P ist: M sscMS - sscMT - sscMg sscellSsscFS - sscellTsscFT - sscellgsscFg fracell sscFS sinalpha - fracellsscFT - ellsscFg Daraus erhalten wir für die Zugspannung im Seil: sscFS fracsscFT + sscFgsinalpha frac F + m ncgsina Fs approx FsS abc Die Horizontalkomponente der Kraft ist: F_x sscFS cosalpha Fs cosa Fx approx FxS Die Vertikalkomponente ist: F_y sscFT + sscFg - sscFS sinalpha F + m ncg - Fs sina Fy approx FyS abcliste
Ein FO schwerer Träger der Länge ell sei drehbar am Punkt P aufgehängt. Am Ende des Trägers seien mO befestigt. Der Träger werde durch ein Seil in der Horizontalen gehalten so dass das Seil und Träger einen Winkel von aO einschliessen. Das Seil ist in fracell Abstand vom Punkt P befestigt vgl. Abb.. abcliste abc DuSieBestimmeBestimmen Sie die Zugspannung im oberen Seil. abc DuSieBestimmeBestimmen Sie die Komponenten der Kraft die die Halterung im Punkt P auf den Träger ausübt. abcliste center tikzpicturelatex scale.erface/.style postactiondrawdecoratedecorationborderangle amplitude.cmsegment length.mm drawline widthptgray -- ; drawvery thick .. -- ..; drawthick fillgray . circle mm; drawthick fillblack . circle mm; drawvery thick .. -- ..; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- ; drawblackline width.pterface.--.; drawline width.pt . -- . -- . -- .; drawthick fillgray . circle mm; drawthick fillblack . circle .mm; nodecolorgreen!!black at .. P; drawline widthpt . -- ; drawthick white circle .pt; drawthick . -- .; drawcolorgreen!!blackthick- .. -- .; nodecolorgreen!!black at . fracell; drawthick . arc ::.cm; nodecolorgreen!!black at .. aO; drawthick white . circle .pt; drawthick .-. circle mm; drawthickfillgray .-.-. rectangle .+.-.; nodecolorgreen!!black at - mO; tikzpicture center
Solution:
abcliste abc Die Drehmomentgleichung für die Drehachse beim Punkt P ist: M sscMS - sscMT - sscMg sscellSsscFS - sscellTsscFT - sscellgsscFg fracell sscFS sinalpha - fracellsscFT - ellsscFg Daraus erhalten wir für die Zugspannung im Seil: sscFS fracsscFT + sscFgsinalpha frac F + m ncgsina Fs approx FsS abc Die Horizontalkomponente der Kraft ist: F_x sscFS cosalpha Fs cosa Fx approx FxS Die Vertikalkomponente ist: F_y sscFT + sscFg - sscFS sinalpha F + m ncg - Fs sina Fy approx FyS abcliste
Contained in these collections:
-
Statik am Stahlträger by TeXercises
Asked Quantity:
Kraft \(F\)
in
Newton \(\rm N\)
Physical Quantity
Kraft \(F\)
Einfluss, der Körper verformt oder beschleunigt
Masse mal Beschleunigung
Unit
Newton (\(\rm N\))
Base?
SI?
Metric?
Coherent?
Imperial?