Eisenkugel
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Temperatur \(T\) / Volumen \(V\) / Radius \(r\) / Längenausdehnungskoeffizient \(\alpha\) /
The following formulas must be used to solve the exercise:
\(V = \dfrac{4}{3}\pi r^3 \quad \) \(V = V_0 \cdot (1+ 3\alpha \cdot \Delta\vartheta) \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine Eisenkugel Formelbuchper-modereciprocal.perkelvin habe bei degreeCelsius einen Durchmesser von .mm. abcliste abc Auf welche Temperatur ist sie zu erhitzen damit sie in einem kreisrunden Loch mit .mm Öffnung gerade stecken bleibt? abc Um welchen Betrag hat sich dabei das Kugelvolumen vergrössert? abcliste
Solution:
pmrec newqtya.perkelvin newqtydo.m newqtyd.m % Geg textEisenkugeltoalpha a d_ .mm do d .mm d % abclist abc GesTemperaturdifferenzDeltatheta sicelsius % Wir berechnen zunächst das Volumen das die Kugel bei celsius hat und jenes das sie nach dem Erhitzen mindestens haben muss: solqtyVfracpi d^/*pi*dn**cubicmeter solqtyVofracpi d_^/*pi*don**cubicmeter al V_ Vof fracpi qtydo^ Vo V Vf fracpi qtyd^ V. Wir lösen die Formel für die Volumenausdehnung nach Deltatheta auf: al V V_ + V_alphaDeltatheta V - V_ V_ alpha Deltatheta fracVV_-fracV-V_V_ alpha Deltatheta Deltatheta fracalphaqtyfracVV_ - Daraus können wir die Temperaturdifferenz die in diesem Fall der neuen Temperatur entspricht berechnen: solqtyDTfracalpha qtyfracd^d_^-Vn-Von/*an*Voncelsius al Deltatheta fracalphaqtyfracVV_ - DTf fracV - Voa TecDT. % Deltatheta DTf TecDT abc GesVolumendifferenzDelta V sicubicmeter % Die Volumifferenz beträgt solqtyDVfracpid^-d_^Vn-Voncubicmeter solqtyDVmmDVn*ecubicmillimeter al Delta V V-V_ DVf V - Vo DV. % Delta V DVf TecDVmm abclist pmfrac
Eine Eisenkugel Formelbuchper-modereciprocal.perkelvin habe bei degreeCelsius einen Durchmesser von .mm. abcliste abc Auf welche Temperatur ist sie zu erhitzen damit sie in einem kreisrunden Loch mit .mm Öffnung gerade stecken bleibt? abc Um welchen Betrag hat sich dabei das Kugelvolumen vergrössert? abcliste
Solution:
pmrec newqtya.perkelvin newqtydo.m newqtyd.m % Geg textEisenkugeltoalpha a d_ .mm do d .mm d % abclist abc GesTemperaturdifferenzDeltatheta sicelsius % Wir berechnen zunächst das Volumen das die Kugel bei celsius hat und jenes das sie nach dem Erhitzen mindestens haben muss: solqtyVfracpi d^/*pi*dn**cubicmeter solqtyVofracpi d_^/*pi*don**cubicmeter al V_ Vof fracpi qtydo^ Vo V Vf fracpi qtyd^ V. Wir lösen die Formel für die Volumenausdehnung nach Deltatheta auf: al V V_ + V_alphaDeltatheta V - V_ V_ alpha Deltatheta fracVV_-fracV-V_V_ alpha Deltatheta Deltatheta fracalphaqtyfracVV_ - Daraus können wir die Temperaturdifferenz die in diesem Fall der neuen Temperatur entspricht berechnen: solqtyDTfracalpha qtyfracd^d_^-Vn-Von/*an*Voncelsius al Deltatheta fracalphaqtyfracVV_ - DTf fracV - Voa TecDT. % Deltatheta DTf TecDT abc GesVolumendifferenzDelta V sicubicmeter % Die Volumifferenz beträgt solqtyDVfracpid^-d_^Vn-Voncubicmeter solqtyDVmmDVn*ecubicmillimeter al Delta V V-V_ DVf V - Vo DV. % Delta V DVf TecDVmm abclist pmfrac
Meta Information
Exercise:
Eine Eisenkugel Formelbuchper-modereciprocal.perkelvin habe bei degreeCelsius einen Durchmesser von .mm. abcliste abc Auf welche Temperatur ist sie zu erhitzen damit sie in einem kreisrunden Loch mit .mm Öffnung gerade stecken bleibt? abc Um welchen Betrag hat sich dabei das Kugelvolumen vergrössert? abcliste
Solution:
pmrec newqtya.perkelvin newqtydo.m newqtyd.m % Geg textEisenkugeltoalpha a d_ .mm do d .mm d % abclist abc GesTemperaturdifferenzDeltatheta sicelsius % Wir berechnen zunächst das Volumen das die Kugel bei celsius hat und jenes das sie nach dem Erhitzen mindestens haben muss: solqtyVfracpi d^/*pi*dn**cubicmeter solqtyVofracpi d_^/*pi*don**cubicmeter al V_ Vof fracpi qtydo^ Vo V Vf fracpi qtyd^ V. Wir lösen die Formel für die Volumenausdehnung nach Deltatheta auf: al V V_ + V_alphaDeltatheta V - V_ V_ alpha Deltatheta fracVV_-fracV-V_V_ alpha Deltatheta Deltatheta fracalphaqtyfracVV_ - Daraus können wir die Temperaturdifferenz die in diesem Fall der neuen Temperatur entspricht berechnen: solqtyDTfracalpha qtyfracd^d_^-Vn-Von/*an*Voncelsius al Deltatheta fracalphaqtyfracVV_ - DTf fracV - Voa TecDT. % Deltatheta DTf TecDT abc GesVolumendifferenzDelta V sicubicmeter % Die Volumifferenz beträgt solqtyDVfracpid^-d_^Vn-Voncubicmeter solqtyDVmmDVn*ecubicmillimeter al Delta V V-V_ DVf V - Vo DV. % Delta V DVf TecDVmm abclist pmfrac
Eine Eisenkugel Formelbuchper-modereciprocal.perkelvin habe bei degreeCelsius einen Durchmesser von .mm. abcliste abc Auf welche Temperatur ist sie zu erhitzen damit sie in einem kreisrunden Loch mit .mm Öffnung gerade stecken bleibt? abc Um welchen Betrag hat sich dabei das Kugelvolumen vergrössert? abcliste
Solution:
pmrec newqtya.perkelvin newqtydo.m newqtyd.m % Geg textEisenkugeltoalpha a d_ .mm do d .mm d % abclist abc GesTemperaturdifferenzDeltatheta sicelsius % Wir berechnen zunächst das Volumen das die Kugel bei celsius hat und jenes das sie nach dem Erhitzen mindestens haben muss: solqtyVfracpi d^/*pi*dn**cubicmeter solqtyVofracpi d_^/*pi*don**cubicmeter al V_ Vof fracpi qtydo^ Vo V Vf fracpi qtyd^ V. Wir lösen die Formel für die Volumenausdehnung nach Deltatheta auf: al V V_ + V_alphaDeltatheta V - V_ V_ alpha Deltatheta fracVV_-fracV-V_V_ alpha Deltatheta Deltatheta fracalphaqtyfracVV_ - Daraus können wir die Temperaturdifferenz die in diesem Fall der neuen Temperatur entspricht berechnen: solqtyDTfracalpha qtyfracd^d_^-Vn-Von/*an*Voncelsius al Deltatheta fracalphaqtyfracVV_ - DTf fracV - Voa TecDT. % Deltatheta DTf TecDT abc GesVolumendifferenzDelta V sicubicmeter % Die Volumifferenz beträgt solqtyDVfracpid^-d_^Vn-Voncubicmeter solqtyDVmmDVn*ecubicmillimeter al Delta V V-V_ DVf V - Vo DV. % Delta V DVf TecDVmm abclist pmfrac
Contained in these collections:
-
Thermische Ausdehnung von Volumina by TeXercises
-