Elektrodynamik
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine lange dünne und eisenfreie Spule weist folge Daten auf: Spulenlänge l_mboxtiny Sp pq.m; Anzahl Windungen n_mboxtiny Sp numpr; mittlerer Durchmesser der Spule d_mboxtiny Sp pq.cm; Dicke des Kupferdrahts ohne Isolation: d_mboxtiny D pq.mm. abcliste abc Wie gross sind der ohmsche Widerstand R und die Induktivität L der Spule? abc Welche magnetische Flussdichte Bt herrscht in der Mitte der Spule wenn die Spule an eine sinusförmige Wechselspannung mit dem Effektivwert pqV und der Frequenz pqHz angeschlossen wird? Gib die vollständige Funktionsgleichung Bt an! Falls du R und L nicht berechnen konntest verwe folge Werte: R pqOmega L pqmH. abcliste
Solution:
abcliste abc Die gefragten Werte sind R rhoel fracLA rhoel fracN pi r_pi r_^ pq.Omega m fracnumpr pqmpq.m^ pq.Omega L mu_ fracN^ Al pi pqH/m fracnumpr^ pi pqm^pq.m pq.H. abc Die Flussdichte in einer Spule ist B mu_ fracNl I. Der Strom in der Spule ist It fracU_Z sinomega t - phi mit X_L omega L pi f L pq.Omegaquadmboxund Z sqrtR^ + X_L^ sqrtpq.Omega^ + pq.Omega^ pq.Omega. Also ist I_ fracU_Z pq.Aquadmboxbzw. Ieff fracI_sqrt pq.A. abcliste
Eine lange dünne und eisenfreie Spule weist folge Daten auf: Spulenlänge l_mboxtiny Sp pq.m; Anzahl Windungen n_mboxtiny Sp numpr; mittlerer Durchmesser der Spule d_mboxtiny Sp pq.cm; Dicke des Kupferdrahts ohne Isolation: d_mboxtiny D pq.mm. abcliste abc Wie gross sind der ohmsche Widerstand R und die Induktivität L der Spule? abc Welche magnetische Flussdichte Bt herrscht in der Mitte der Spule wenn die Spule an eine sinusförmige Wechselspannung mit dem Effektivwert pqV und der Frequenz pqHz angeschlossen wird? Gib die vollständige Funktionsgleichung Bt an! Falls du R und L nicht berechnen konntest verwe folge Werte: R pqOmega L pqmH. abcliste
Solution:
abcliste abc Die gefragten Werte sind R rhoel fracLA rhoel fracN pi r_pi r_^ pq.Omega m fracnumpr pqmpq.m^ pq.Omega L mu_ fracN^ Al pi pqH/m fracnumpr^ pi pqm^pq.m pq.H. abc Die Flussdichte in einer Spule ist B mu_ fracNl I. Der Strom in der Spule ist It fracU_Z sinomega t - phi mit X_L omega L pi f L pq.Omegaquadmboxund Z sqrtR^ + X_L^ sqrtpq.Omega^ + pq.Omega^ pq.Omega. Also ist I_ fracU_Z pq.Aquadmboxbzw. Ieff fracI_sqrt pq.A. abcliste
Meta Information
Exercise:
Eine lange dünne und eisenfreie Spule weist folge Daten auf: Spulenlänge l_mboxtiny Sp pq.m; Anzahl Windungen n_mboxtiny Sp numpr; mittlerer Durchmesser der Spule d_mboxtiny Sp pq.cm; Dicke des Kupferdrahts ohne Isolation: d_mboxtiny D pq.mm. abcliste abc Wie gross sind der ohmsche Widerstand R und die Induktivität L der Spule? abc Welche magnetische Flussdichte Bt herrscht in der Mitte der Spule wenn die Spule an eine sinusförmige Wechselspannung mit dem Effektivwert pqV und der Frequenz pqHz angeschlossen wird? Gib die vollständige Funktionsgleichung Bt an! Falls du R und L nicht berechnen konntest verwe folge Werte: R pqOmega L pqmH. abcliste
Solution:
abcliste abc Die gefragten Werte sind R rhoel fracLA rhoel fracN pi r_pi r_^ pq.Omega m fracnumpr pqmpq.m^ pq.Omega L mu_ fracN^ Al pi pqH/m fracnumpr^ pi pqm^pq.m pq.H. abc Die Flussdichte in einer Spule ist B mu_ fracNl I. Der Strom in der Spule ist It fracU_Z sinomega t - phi mit X_L omega L pi f L pq.Omegaquadmboxund Z sqrtR^ + X_L^ sqrtpq.Omega^ + pq.Omega^ pq.Omega. Also ist I_ fracU_Z pq.Aquadmboxbzw. Ieff fracI_sqrt pq.A. abcliste
Eine lange dünne und eisenfreie Spule weist folge Daten auf: Spulenlänge l_mboxtiny Sp pq.m; Anzahl Windungen n_mboxtiny Sp numpr; mittlerer Durchmesser der Spule d_mboxtiny Sp pq.cm; Dicke des Kupferdrahts ohne Isolation: d_mboxtiny D pq.mm. abcliste abc Wie gross sind der ohmsche Widerstand R und die Induktivität L der Spule? abc Welche magnetische Flussdichte Bt herrscht in der Mitte der Spule wenn die Spule an eine sinusförmige Wechselspannung mit dem Effektivwert pqV und der Frequenz pqHz angeschlossen wird? Gib die vollständige Funktionsgleichung Bt an! Falls du R und L nicht berechnen konntest verwe folge Werte: R pqOmega L pqmH. abcliste
Solution:
abcliste abc Die gefragten Werte sind R rhoel fracLA rhoel fracN pi r_pi r_^ pq.Omega m fracnumpr pqmpq.m^ pq.Omega L mu_ fracN^ Al pi pqH/m fracnumpr^ pi pqm^pq.m pq.H. abc Die Flussdichte in einer Spule ist B mu_ fracNl I. Der Strom in der Spule ist It fracU_Z sinomega t - phi mit X_L omega L pi f L pq.Omegaquadmboxund Z sqrtR^ + X_L^ sqrtpq.Omega^ + pq.Omega^ pq.Omega. Also ist I_ fracU_Z pq.Aquadmboxbzw. Ieff fracI_sqrt pq.A. abcliste
Contained in these collections:
-
PAM Matura 2005 Stans by uz
-