Fläche eines Dreiecks berechnen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
DuSieBerechneBerechnen Sie die Fläche eines Dreiecks mit den Eckpunkt AAxAyAz BBxByBz und CCxCyCz. center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A AAxAyAz; nodeabove right at B BBxByBz; noderight at C CCxCyCz; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
Solution:
Die Formel zur Berechnung der Fläche eines dreidimensionalen Dreiecks lautet: Afrac |atimes c| pgfmathsetmacroeBx-Ax pgfmathsetmacrofBy-Ay pgfmathsetmacrogBz-Az pgfmathsetmacrohCx-Ax pgfmathsetmacroiCy-Ay pgfmathsetmacrojCz-Az overrightarrowAB bmatrix x_B - x_A y_B - y_A z_B - z_A bmatrix bmatrix e f g bmatrix bmatrix x_ y_ z_ bmatrix overrightarrowAC bmatrix x_C - x_A y_C - y_A z_C - z_A bmatrix bmatrix h i j bmatrix bmatrix x_ y_ z_ bmatrix pgfmathsetmacrokf*j-g*i pgfmathsetmacrolg*h-e*j pgfmathsetmacrome*i-f*h Das Kreuzprodukt wird wie folgt berechnet: overrightarrowABtimesoverrightarrowAC bmatrix y_ z_ - z_ y_ z_ x_ - x_ z_ x_ y_ - y_ x_ bmatrix bmatrix k l m bmatrix Um nun die Fläche des Dreiecks zu berechnen muss das Kreuzprodukt mit frac multipliziert werden und von einem Vektor zu einer Zahl umgerechnet werden. pgfmathsetmacron.*k pgfmathsetmacroo.*l pgfmathsetmacrop.*m Afrac bmatrix k l m bmatrix bmatrix n o p bmatrix pgfmathsetmacroqn*n pgfmathsetmacroro*o pgfmathsetmacrosp*p pgfmathsetmacrotq+r+s FPevalnumberToRoott FProotresultnumberToRoot defuround-modeplaces round-precisionresult A sqrtx^+y^+z^ sqrtn^+o^+p^ % sqrt q + r + s sqrt t u center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A A; nodeabove right at B B; noderight at C C; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
DuSieBerechneBerechnen Sie die Fläche eines Dreiecks mit den Eckpunkt AAxAyAz BBxByBz und CCxCyCz. center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A AAxAyAz; nodeabove right at B BBxByBz; noderight at C CCxCyCz; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
Solution:
Die Formel zur Berechnung der Fläche eines dreidimensionalen Dreiecks lautet: Afrac |atimes c| pgfmathsetmacroeBx-Ax pgfmathsetmacrofBy-Ay pgfmathsetmacrogBz-Az pgfmathsetmacrohCx-Ax pgfmathsetmacroiCy-Ay pgfmathsetmacrojCz-Az overrightarrowAB bmatrix x_B - x_A y_B - y_A z_B - z_A bmatrix bmatrix e f g bmatrix bmatrix x_ y_ z_ bmatrix overrightarrowAC bmatrix x_C - x_A y_C - y_A z_C - z_A bmatrix bmatrix h i j bmatrix bmatrix x_ y_ z_ bmatrix pgfmathsetmacrokf*j-g*i pgfmathsetmacrolg*h-e*j pgfmathsetmacrome*i-f*h Das Kreuzprodukt wird wie folgt berechnet: overrightarrowABtimesoverrightarrowAC bmatrix y_ z_ - z_ y_ z_ x_ - x_ z_ x_ y_ - y_ x_ bmatrix bmatrix k l m bmatrix Um nun die Fläche des Dreiecks zu berechnen muss das Kreuzprodukt mit frac multipliziert werden und von einem Vektor zu einer Zahl umgerechnet werden. pgfmathsetmacron.*k pgfmathsetmacroo.*l pgfmathsetmacrop.*m Afrac bmatrix k l m bmatrix bmatrix n o p bmatrix pgfmathsetmacroqn*n pgfmathsetmacroro*o pgfmathsetmacrosp*p pgfmathsetmacrotq+r+s FPevalnumberToRoott FProotresultnumberToRoot defuround-modeplaces round-precisionresult A sqrtx^+y^+z^ sqrtn^+o^+p^ % sqrt q + r + s sqrt t u center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A A; nodeabove right at B B; noderight at C C; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
Meta Information
Exercise:
DuSieBerechneBerechnen Sie die Fläche eines Dreiecks mit den Eckpunkt AAxAyAz BBxByBz und CCxCyCz. center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A AAxAyAz; nodeabove right at B BBxByBz; noderight at C CCxCyCz; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
Solution:
Die Formel zur Berechnung der Fläche eines dreidimensionalen Dreiecks lautet: Afrac |atimes c| pgfmathsetmacroeBx-Ax pgfmathsetmacrofBy-Ay pgfmathsetmacrogBz-Az pgfmathsetmacrohCx-Ax pgfmathsetmacroiCy-Ay pgfmathsetmacrojCz-Az overrightarrowAB bmatrix x_B - x_A y_B - y_A z_B - z_A bmatrix bmatrix e f g bmatrix bmatrix x_ y_ z_ bmatrix overrightarrowAC bmatrix x_C - x_A y_C - y_A z_C - z_A bmatrix bmatrix h i j bmatrix bmatrix x_ y_ z_ bmatrix pgfmathsetmacrokf*j-g*i pgfmathsetmacrolg*h-e*j pgfmathsetmacrome*i-f*h Das Kreuzprodukt wird wie folgt berechnet: overrightarrowABtimesoverrightarrowAC bmatrix y_ z_ - z_ y_ z_ x_ - x_ z_ x_ y_ - y_ x_ bmatrix bmatrix k l m bmatrix Um nun die Fläche des Dreiecks zu berechnen muss das Kreuzprodukt mit frac multipliziert werden und von einem Vektor zu einer Zahl umgerechnet werden. pgfmathsetmacron.*k pgfmathsetmacroo.*l pgfmathsetmacrop.*m Afrac bmatrix k l m bmatrix bmatrix n o p bmatrix pgfmathsetmacroqn*n pgfmathsetmacroro*o pgfmathsetmacrosp*p pgfmathsetmacrotq+r+s FPevalnumberToRoott FProotresultnumberToRoot defuround-modeplaces round-precisionresult A sqrtx^+y^+z^ sqrtn^+o^+p^ % sqrt q + r + s sqrt t u center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A A; nodeabove right at B B; noderight at C C; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
DuSieBerechneBerechnen Sie die Fläche eines Dreiecks mit den Eckpunkt AAxAyAz BBxByBz und CCxCyCz. center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A AAxAyAz; nodeabove right at B BBxByBz; noderight at C CCxCyCz; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
Solution:
Die Formel zur Berechnung der Fläche eines dreidimensionalen Dreiecks lautet: Afrac |atimes c| pgfmathsetmacroeBx-Ax pgfmathsetmacrofBy-Ay pgfmathsetmacrogBz-Az pgfmathsetmacrohCx-Ax pgfmathsetmacroiCy-Ay pgfmathsetmacrojCz-Az overrightarrowAB bmatrix x_B - x_A y_B - y_A z_B - z_A bmatrix bmatrix e f g bmatrix bmatrix x_ y_ z_ bmatrix overrightarrowAC bmatrix x_C - x_A y_C - y_A z_C - z_A bmatrix bmatrix h i j bmatrix bmatrix x_ y_ z_ bmatrix pgfmathsetmacrokf*j-g*i pgfmathsetmacrolg*h-e*j pgfmathsetmacrome*i-f*h Das Kreuzprodukt wird wie folgt berechnet: overrightarrowABtimesoverrightarrowAC bmatrix y_ z_ - z_ y_ z_ x_ - x_ z_ x_ y_ - y_ x_ bmatrix bmatrix k l m bmatrix Um nun die Fläche des Dreiecks zu berechnen muss das Kreuzprodukt mit frac multipliziert werden und von einem Vektor zu einer Zahl umgerechnet werden. pgfmathsetmacron.*k pgfmathsetmacroo.*l pgfmathsetmacrop.*m Afrac bmatrix k l m bmatrix bmatrix n o p bmatrix pgfmathsetmacroqn*n pgfmathsetmacroro*o pgfmathsetmacrosp*p pgfmathsetmacrotq+r+s FPevalnumberToRoott FProotresultnumberToRoot defuround-modeplaces round-precisionresult A sqrtx^+y^+z^ sqrtn^+o^+p^ % sqrt q + r + s sqrt t u center tikzpicturescale. %Achsen draw- -- nodeanchornorth eastx; draw- -- nodeanchornorth westy; draw- -- nodeanchorsouthz; % Dreieck mit Seitenlängen a b und c coordinate A at AxAyAz; coordinate B at BxByBz; coordinate C at CxCyCz; draw A -- B -- C -- cycle; % Beschriftung der Ecken nodeleft at A A; nodeabove right at B B; noderight at C C; % Beschriftung der Seiten nodeabove left at A!.!B a; noderight at B!.!C b; nodebelow at A!.!C c; tikzpicture center
Contained in these collections: