Schnittpunkt zweier Geraden im Raum
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Gegeben sind zwei Geraden im Raum vecr_ pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix und vecr_ pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix definiert durch ihre Parametergleichungen. Finde den Schnittpunkt S der beiden Geraden falls er existiert.
Solution:
center tdplotsetmaincoords tikzpicturetdplot_main_coords fillblack Ax Ay Az circle . nodeabove a; fillblack Bx By Bz circle . nodeabove b; drawthick domain: smooth variablet red plot Ax + t * Vx Ay + t * Vy Az + t * Vz noderightr_; drawthick domain: smooth variablet blue plot Bx + t * Wx By + t * Wy Bz + t * Wz noderightr_; drawred!!black very thick - Ax Ay Az -- ++Vx * . Vy * . Vz * . nodeabove v; drawblue!!black very thick - Bx By Bz -- ++Wx * . Wy * . Wz * . nodeabove w; fillblack Sx Sy Sz circle . nodeabove S; tikzpicture center Um einen Schnittpunkt zu erhalten müssen beide Geraden gleichgesetzt werden. * veca + lambdavecv vecb + muvecw * center pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix center Aus der ersten Zeile dieses Gleichungssystems kann die Abhängigkeit zwischen lambda und mu hergestellt werden: %* % lambda fracWx mu prsinglediffxprsingleVx %* Dies kann jetzt in die zweite Zeile eingesetzt werden um einen Wert für mu zu bekommen: %* % Ay + Vy dfracWxmu prsinglediffxprsingleVx By prmultWymu % factorWxmu prsinglediffx pgfmathprnumberdiffy prmultWymu % Wxmu prsinglediffx pgfmathprnumbernewdiffy prmultnewWymu %prmultdiffmumu pgfmathprnumberdiff %mu pgfmathprnumbermures %* Dies kann jetzt in die obrige Formel für lambda eingesetzt werden um dessen Wert zu bekommen: %* % lambda dfracWxpgfmathprnumbermures prsinglediffxprsingleVx pgfmathprnumberlambdares %* Nun kann man eine dieser Werte in die entspreche Geraden-Formel einsetzen um den Schnittpunkt zu bekommen. %Der Schnittpunkt der beiden Geraden ist am Punkt SpgfmathprnumberSx pgfmathprnumberSy pgfmathprnumberSz
Gegeben sind zwei Geraden im Raum vecr_ pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix und vecr_ pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix definiert durch ihre Parametergleichungen. Finde den Schnittpunkt S der beiden Geraden falls er existiert.
Solution:
center tdplotsetmaincoords tikzpicturetdplot_main_coords fillblack Ax Ay Az circle . nodeabove a; fillblack Bx By Bz circle . nodeabove b; drawthick domain: smooth variablet red plot Ax + t * Vx Ay + t * Vy Az + t * Vz noderightr_; drawthick domain: smooth variablet blue plot Bx + t * Wx By + t * Wy Bz + t * Wz noderightr_; drawred!!black very thick - Ax Ay Az -- ++Vx * . Vy * . Vz * . nodeabove v; drawblue!!black very thick - Bx By Bz -- ++Wx * . Wy * . Wz * . nodeabove w; fillblack Sx Sy Sz circle . nodeabove S; tikzpicture center Um einen Schnittpunkt zu erhalten müssen beide Geraden gleichgesetzt werden. * veca + lambdavecv vecb + muvecw * center pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix center Aus der ersten Zeile dieses Gleichungssystems kann die Abhängigkeit zwischen lambda und mu hergestellt werden: %* % lambda fracWx mu prsinglediffxprsingleVx %* Dies kann jetzt in die zweite Zeile eingesetzt werden um einen Wert für mu zu bekommen: %* % Ay + Vy dfracWxmu prsinglediffxprsingleVx By prmultWymu % factorWxmu prsinglediffx pgfmathprnumberdiffy prmultWymu % Wxmu prsinglediffx pgfmathprnumbernewdiffy prmultnewWymu %prmultdiffmumu pgfmathprnumberdiff %mu pgfmathprnumbermures %* Dies kann jetzt in die obrige Formel für lambda eingesetzt werden um dessen Wert zu bekommen: %* % lambda dfracWxpgfmathprnumbermures prsinglediffxprsingleVx pgfmathprnumberlambdares %* Nun kann man eine dieser Werte in die entspreche Geraden-Formel einsetzen um den Schnittpunkt zu bekommen. %Der Schnittpunkt der beiden Geraden ist am Punkt SpgfmathprnumberSx pgfmathprnumberSy pgfmathprnumberSz
Meta Information
Exercise:
Gegeben sind zwei Geraden im Raum vecr_ pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix und vecr_ pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix definiert durch ihre Parametergleichungen. Finde den Schnittpunkt S der beiden Geraden falls er existiert.
Solution:
center tdplotsetmaincoords tikzpicturetdplot_main_coords fillblack Ax Ay Az circle . nodeabove a; fillblack Bx By Bz circle . nodeabove b; drawthick domain: smooth variablet red plot Ax + t * Vx Ay + t * Vy Az + t * Vz noderightr_; drawthick domain: smooth variablet blue plot Bx + t * Wx By + t * Wy Bz + t * Wz noderightr_; drawred!!black very thick - Ax Ay Az -- ++Vx * . Vy * . Vz * . nodeabove v; drawblue!!black very thick - Bx By Bz -- ++Wx * . Wy * . Wz * . nodeabove w; fillblack Sx Sy Sz circle . nodeabove S; tikzpicture center Um einen Schnittpunkt zu erhalten müssen beide Geraden gleichgesetzt werden. * veca + lambdavecv vecb + muvecw * center pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix center Aus der ersten Zeile dieses Gleichungssystems kann die Abhängigkeit zwischen lambda und mu hergestellt werden: %* % lambda fracWx mu prsinglediffxprsingleVx %* Dies kann jetzt in die zweite Zeile eingesetzt werden um einen Wert für mu zu bekommen: %* % Ay + Vy dfracWxmu prsinglediffxprsingleVx By prmultWymu % factorWxmu prsinglediffx pgfmathprnumberdiffy prmultWymu % Wxmu prsinglediffx pgfmathprnumbernewdiffy prmultnewWymu %prmultdiffmumu pgfmathprnumberdiff %mu pgfmathprnumbermures %* Dies kann jetzt in die obrige Formel für lambda eingesetzt werden um dessen Wert zu bekommen: %* % lambda dfracWxpgfmathprnumbermures prsinglediffxprsingleVx pgfmathprnumberlambdares %* Nun kann man eine dieser Werte in die entspreche Geraden-Formel einsetzen um den Schnittpunkt zu bekommen. %Der Schnittpunkt der beiden Geraden ist am Punkt SpgfmathprnumberSx pgfmathprnumberSy pgfmathprnumberSz
Gegeben sind zwei Geraden im Raum vecr_ pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix und vecr_ pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix definiert durch ihre Parametergleichungen. Finde den Schnittpunkt S der beiden Geraden falls er existiert.
Solution:
center tdplotsetmaincoords tikzpicturetdplot_main_coords fillblack Ax Ay Az circle . nodeabove a; fillblack Bx By Bz circle . nodeabove b; drawthick domain: smooth variablet red plot Ax + t * Vx Ay + t * Vy Az + t * Vz noderightr_; drawthick domain: smooth variablet blue plot Bx + t * Wx By + t * Wy Bz + t * Wz noderightr_; drawred!!black very thick - Ax Ay Az -- ++Vx * . Vy * . Vz * . nodeabove v; drawblue!!black very thick - Bx By Bz -- ++Wx * . Wy * . Wz * . nodeabove w; fillblack Sx Sy Sz circle . nodeabove S; tikzpicture center Um einen Schnittpunkt zu erhalten müssen beide Geraden gleichgesetzt werden. * veca + lambdavecv vecb + muvecw * center pmatrix pgfmathprnumberAx pgfmathprnumberAy pgfmathprnumberAz pmatrix + lambda pmatrix pgfmathprnumberVx pgfmathprnumberVy pgfmathprnumberVz pmatrix pmatrix pgfmathprnumberBx pgfmathprnumberBy pgfmathprnumberBz pmatrix + mu pmatrix pgfmathprnumberWx pgfmathprnumberWy pgfmathprnumberWz pmatrix center Aus der ersten Zeile dieses Gleichungssystems kann die Abhängigkeit zwischen lambda und mu hergestellt werden: %* % lambda fracWx mu prsinglediffxprsingleVx %* Dies kann jetzt in die zweite Zeile eingesetzt werden um einen Wert für mu zu bekommen: %* % Ay + Vy dfracWxmu prsinglediffxprsingleVx By prmultWymu % factorWxmu prsinglediffx pgfmathprnumberdiffy prmultWymu % Wxmu prsinglediffx pgfmathprnumbernewdiffy prmultnewWymu %prmultdiffmumu pgfmathprnumberdiff %mu pgfmathprnumbermures %* Dies kann jetzt in die obrige Formel für lambda eingesetzt werden um dessen Wert zu bekommen: %* % lambda dfracWxpgfmathprnumbermures prsinglediffxprsingleVx pgfmathprnumberlambdares %* Nun kann man eine dieser Werte in die entspreche Geraden-Formel einsetzen um den Schnittpunkt zu bekommen. %Der Schnittpunkt der beiden Geraden ist am Punkt SpgfmathprnumberSx pgfmathprnumberSy pgfmathprnumberSz
Contained in these collections: