Kerzen im Iglu
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Zeit \(t\) / Temperatur \(T\) / Arbeit \(W\) / Energie \(E\) / Leistung \(P\) / Fläche \(A\) / Radius \(r\) / Oberfläche \(S\) / Dicke \(d\) /
The following formulas must be used to solve the exercise:
\(S = 4 \pi r^2 \quad \) \(P = \dfrac{E}{t} = \dfrac{W}{t} \quad \) \(\Phi = \lambda \dfrac{T_1-T_2}{d}A \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Iglu dessen Form vereinfacht als Halbkugel mit einem Innenradius von .m betrachtet werden kann werde aus festgestampftem Schnee mit einer Wärmeleitfähigkeit von pqmilliwattperkelvinpermeter errichtet. Die Dicke der Wände des Iglus betrage pqcm. Wie viele Kerzen mit einer Leistung von pqW müsste man im Innern des Iglus anzünden damit bei einer Aussentemperatur von -celsius im Innern des Iglus eine Temperatur von -.celsius aufrecht erhalten werden kann?
Solution:
newqtyr.m newqtyLomilliwattperkelvinpermeter newqtyLLon wattperkelvinpermeter newqtyxocm newqtyxxon m newqtyPeW newqtyTk-celsius newqtyTw-celsius % Geg r r lambda Lo L x xo x P_ Pe sscTk Tk sscTw Tw % GesAnzahlN % Die Oberfläche der Iglu-Halbkugel beträgt solqtyApi r^*pi*rn**squaremeter al A Af pi qtyr^ A. % Der Wärmestrom durch diese Fläche beträgt demnach solqtyPlambda fracsscTw-sscTkx pi r^Ln*Twn-Tkn/xn*AnW al varPhi lambda fracsscTw-sscTkx A Pf L fracqtyTw - Tkx A P. % Die Anzahl Kerzen beträgt demnach solqtyNlambda fracsscTw-sscTkNx pi r^Pn/Pen al N fracvarPhiP_ Nf fracPPe N % N Nf NII
Ein Iglu dessen Form vereinfacht als Halbkugel mit einem Innenradius von .m betrachtet werden kann werde aus festgestampftem Schnee mit einer Wärmeleitfähigkeit von pqmilliwattperkelvinpermeter errichtet. Die Dicke der Wände des Iglus betrage pqcm. Wie viele Kerzen mit einer Leistung von pqW müsste man im Innern des Iglus anzünden damit bei einer Aussentemperatur von -celsius im Innern des Iglus eine Temperatur von -.celsius aufrecht erhalten werden kann?
Solution:
newqtyr.m newqtyLomilliwattperkelvinpermeter newqtyLLon wattperkelvinpermeter newqtyxocm newqtyxxon m newqtyPeW newqtyTk-celsius newqtyTw-celsius % Geg r r lambda Lo L x xo x P_ Pe sscTk Tk sscTw Tw % GesAnzahlN % Die Oberfläche der Iglu-Halbkugel beträgt solqtyApi r^*pi*rn**squaremeter al A Af pi qtyr^ A. % Der Wärmestrom durch diese Fläche beträgt demnach solqtyPlambda fracsscTw-sscTkx pi r^Ln*Twn-Tkn/xn*AnW al varPhi lambda fracsscTw-sscTkx A Pf L fracqtyTw - Tkx A P. % Die Anzahl Kerzen beträgt demnach solqtyNlambda fracsscTw-sscTkNx pi r^Pn/Pen al N fracvarPhiP_ Nf fracPPe N % N Nf NII
Meta Information
Exercise:
Ein Iglu dessen Form vereinfacht als Halbkugel mit einem Innenradius von .m betrachtet werden kann werde aus festgestampftem Schnee mit einer Wärmeleitfähigkeit von pqmilliwattperkelvinpermeter errichtet. Die Dicke der Wände des Iglus betrage pqcm. Wie viele Kerzen mit einer Leistung von pqW müsste man im Innern des Iglus anzünden damit bei einer Aussentemperatur von -celsius im Innern des Iglus eine Temperatur von -.celsius aufrecht erhalten werden kann?
Solution:
newqtyr.m newqtyLomilliwattperkelvinpermeter newqtyLLon wattperkelvinpermeter newqtyxocm newqtyxxon m newqtyPeW newqtyTk-celsius newqtyTw-celsius % Geg r r lambda Lo L x xo x P_ Pe sscTk Tk sscTw Tw % GesAnzahlN % Die Oberfläche der Iglu-Halbkugel beträgt solqtyApi r^*pi*rn**squaremeter al A Af pi qtyr^ A. % Der Wärmestrom durch diese Fläche beträgt demnach solqtyPlambda fracsscTw-sscTkx pi r^Ln*Twn-Tkn/xn*AnW al varPhi lambda fracsscTw-sscTkx A Pf L fracqtyTw - Tkx A P. % Die Anzahl Kerzen beträgt demnach solqtyNlambda fracsscTw-sscTkNx pi r^Pn/Pen al N fracvarPhiP_ Nf fracPPe N % N Nf NII
Ein Iglu dessen Form vereinfacht als Halbkugel mit einem Innenradius von .m betrachtet werden kann werde aus festgestampftem Schnee mit einer Wärmeleitfähigkeit von pqmilliwattperkelvinpermeter errichtet. Die Dicke der Wände des Iglus betrage pqcm. Wie viele Kerzen mit einer Leistung von pqW müsste man im Innern des Iglus anzünden damit bei einer Aussentemperatur von -celsius im Innern des Iglus eine Temperatur von -.celsius aufrecht erhalten werden kann?
Solution:
newqtyr.m newqtyLomilliwattperkelvinpermeter newqtyLLon wattperkelvinpermeter newqtyxocm newqtyxxon m newqtyPeW newqtyTk-celsius newqtyTw-celsius % Geg r r lambda Lo L x xo x P_ Pe sscTk Tk sscTw Tw % GesAnzahlN % Die Oberfläche der Iglu-Halbkugel beträgt solqtyApi r^*pi*rn**squaremeter al A Af pi qtyr^ A. % Der Wärmestrom durch diese Fläche beträgt demnach solqtyPlambda fracsscTw-sscTkx pi r^Ln*Twn-Tkn/xn*AnW al varPhi lambda fracsscTw-sscTkx A Pf L fracqtyTw - Tkx A P. % Die Anzahl Kerzen beträgt demnach solqtyNlambda fracsscTw-sscTkNx pi r^Pn/Pen al N fracvarPhiP_ Nf fracPPe N % N Nf NII
Contained in these collections:
-
Aufgaben: Wärmeleitung by sn
-
Iglu by TeXercises