Nichtstationärer Zustand
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Leiten Sie die Wahrscheinlichkeitsdichte für den Zustand psixt fracsqrtpsi_xt+fracsqrtpsi_xt des unlichen Potentialtopfs her. Vergleichen Sie das Resultat mit der Wahrscheinlichkeitsdichte eines stationären Zustands.
Solution:
Die Wellenfunktion ist psixt fracAsqrtleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right Es folgt für die Wahrscheinlichkeitsdichte Pxt psi^*xtpsixt fracA^leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right^* &qquad timesleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^leftsink_ xe^-iomega_ t+sink_ xe^-iomega_ t right &qquad times leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^ sin^k_ x+sink_ xsink_ x e^iomega_-omega_t &qquad + sink_ xsink_ x e^-iomega_-omega_t + sin^k_ x fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xe^iomega_-omega_t+e^-iomega_-omega_t fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xcosomega_-omega_t mit k_n_pi/L. vspacemm Die Wahrscheinlichkeitsdichte hängt offensichtlich von der Zeit ab weshalb eine Überlagerung von Eigenzuständen auch als nichtstationärer Zustand bezeichnet wird. Die Frequenz mit der sich die Wahrscheinlichkeitsdichte ändert entspricht der Energiedifferenz zwischen den beiden Energieniveaus. vspacemm Der Link zu dieser Aufgabe zeigt eine Animation für n_ und n_.
Leiten Sie die Wahrscheinlichkeitsdichte für den Zustand psixt fracsqrtpsi_xt+fracsqrtpsi_xt des unlichen Potentialtopfs her. Vergleichen Sie das Resultat mit der Wahrscheinlichkeitsdichte eines stationären Zustands.
Solution:
Die Wellenfunktion ist psixt fracAsqrtleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right Es folgt für die Wahrscheinlichkeitsdichte Pxt psi^*xtpsixt fracA^leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right^* &qquad timesleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^leftsink_ xe^-iomega_ t+sink_ xe^-iomega_ t right &qquad times leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^ sin^k_ x+sink_ xsink_ x e^iomega_-omega_t &qquad + sink_ xsink_ x e^-iomega_-omega_t + sin^k_ x fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xe^iomega_-omega_t+e^-iomega_-omega_t fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xcosomega_-omega_t mit k_n_pi/L. vspacemm Die Wahrscheinlichkeitsdichte hängt offensichtlich von der Zeit ab weshalb eine Überlagerung von Eigenzuständen auch als nichtstationärer Zustand bezeichnet wird. Die Frequenz mit der sich die Wahrscheinlichkeitsdichte ändert entspricht der Energiedifferenz zwischen den beiden Energieniveaus. vspacemm Der Link zu dieser Aufgabe zeigt eine Animation für n_ und n_.
Meta Information
Exercise:
Leiten Sie die Wahrscheinlichkeitsdichte für den Zustand psixt fracsqrtpsi_xt+fracsqrtpsi_xt des unlichen Potentialtopfs her. Vergleichen Sie das Resultat mit der Wahrscheinlichkeitsdichte eines stationären Zustands.
Solution:
Die Wellenfunktion ist psixt fracAsqrtleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right Es folgt für die Wahrscheinlichkeitsdichte Pxt psi^*xtpsixt fracA^leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right^* &qquad timesleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^leftsink_ xe^-iomega_ t+sink_ xe^-iomega_ t right &qquad times leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^ sin^k_ x+sink_ xsink_ x e^iomega_-omega_t &qquad + sink_ xsink_ x e^-iomega_-omega_t + sin^k_ x fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xe^iomega_-omega_t+e^-iomega_-omega_t fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xcosomega_-omega_t mit k_n_pi/L. vspacemm Die Wahrscheinlichkeitsdichte hängt offensichtlich von der Zeit ab weshalb eine Überlagerung von Eigenzuständen auch als nichtstationärer Zustand bezeichnet wird. Die Frequenz mit der sich die Wahrscheinlichkeitsdichte ändert entspricht der Energiedifferenz zwischen den beiden Energieniveaus. vspacemm Der Link zu dieser Aufgabe zeigt eine Animation für n_ und n_.
Leiten Sie die Wahrscheinlichkeitsdichte für den Zustand psixt fracsqrtpsi_xt+fracsqrtpsi_xt des unlichen Potentialtopfs her. Vergleichen Sie das Resultat mit der Wahrscheinlichkeitsdichte eines stationären Zustands.
Solution:
Die Wellenfunktion ist psixt fracAsqrtleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right Es folgt für die Wahrscheinlichkeitsdichte Pxt psi^*xtpsixt fracA^leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right^* &qquad timesleftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^leftsink_ xe^-iomega_ t+sink_ xe^-iomega_ t right &qquad times leftsink_ xe^iomega_ t+sink_ xe^iomega_ t right fracA^ sin^k_ x+sink_ xsink_ x e^iomega_-omega_t &qquad + sink_ xsink_ x e^-iomega_-omega_t + sin^k_ x fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xe^iomega_-omega_t+e^-iomega_-omega_t fracA^sin^k_ x+sin^k_ x &qquad + sink_ xsink_ xcosomega_-omega_t mit k_n_pi/L. vspacemm Die Wahrscheinlichkeitsdichte hängt offensichtlich von der Zeit ab weshalb eine Überlagerung von Eigenzuständen auch als nichtstationärer Zustand bezeichnet wird. Die Frequenz mit der sich die Wahrscheinlichkeitsdichte ändert entspricht der Energiedifferenz zwischen den beiden Energieniveaus. vspacemm Der Link zu dieser Aufgabe zeigt eine Animation für n_ und n_.
Contained in these collections:
-
Schrödingergleichung by by